优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              已知\(a∈R\),双曲线\(Γ: \dfrac {x^{2}}{a^{2}}-y^{2}=1\)
              \((1)\)若点\((2,1)\)在\(Γ\)上,求\(Γ\)的焦点坐标
              \((2)\)若\(a=1\),直线\(y=kx+1\)与\(Γ\)相交于\(A\)、\(B\)两点,且线段\(AB\)中点的横坐标为\(1\),求实数\(k\)的值
            • 2.
              已知\(F_{1}\),\(F_{2}\)分别为双曲线\( \dfrac {x^{2}}{a^{2}}- \dfrac {y^{2}}{b^{2}}=1(a > 0,b > 0)\)的左焦点和右焦点,过\(F_{2}\)的直线\(l\)与双曲线的右支交于\(A\),\(B\)两点,\(\triangle AF_{1}F_{2}\)的内切圆半径为\(r_{1}\),\(\triangle BF_{1}F_{2}\)的内切圆半径为\(r_{2}\),若\(r_{1}=2r_{2}\),则直线\(l\)的斜率为\((\)  \()\)
              A.\(1\)
              B.\( \sqrt {2}\)
              C.\(2\)
              D.\(2 \sqrt {2}\)
            • 3.
              设双曲线\( \dfrac {x^{2}}{a^{2}}- \dfrac {y^{2}}{b^{2}}=1(a > 0,b > 0)\)的右顶点为\(A\),右焦点为\(F(c,0)\),弦\(PQ\)的过\(F\)且垂直于\(x\)轴,过点\(P\),\(Q\)分别作直线\(AP\),\(AQ\)的垂线,两垂线交于点\(B\),若\(B\)到直线\(PQ\)的距离小于\(2(a+c)\),则该双曲线离心率的取值范围是\((\)  \()\)
              A.\((1, \sqrt {3})\)
              B.\(( \sqrt {3},+∞)\)
              C.\((0, \sqrt {3})\)
              D.\((2, \sqrt {3})\)
            • 4.
              如图,在平面直角坐标系\(xOy\)中,直线\(l_{1}\):\(y=x\)与直线\(l_{2}\):\(y=-x\)之间的阴影部分记为\(W\),区域\(W\)中动点\(P(x,y)\)到\(l_{1}\),\(l_{2}\)的距离之积为\(1\).
              \((\)Ⅰ\()\)求点\(P\)的轨迹\(C\)的方程;
              \((\)Ⅱ\()\)动直线\(l\)穿过区域\(W\),分别交直线\(l_{1}\),\(l_{2}\)于\(A\),\(B\)两点,若直线\(l\)与轨迹\(C\)有且只有一个公共点,求证:\(\triangle OAB\)的面积恒为定值.
            • 5.
              双曲线\( \dfrac {x^{2}}{a^{2}}- \dfrac {y^{2}}{b^{2}}=1(a > 0,b > 0)\)的右焦点\(F(c,0)\)关于渐近线的对称点在双曲线的左支上,则双曲线的离心率为\((\)  \()\)
              A.\( \sqrt {2}\)
              B.\( \sqrt {3}\)
              C.\(2\)
              D.\( \sqrt {5}\)
            • 6.
              已知双曲线\(C\):\( \dfrac {x^{2}}{a^{2}}- \dfrac {y^{2}}{b^{2}}=1(b > a > 0)\)的右焦点为\(F\),\(O\)为坐标原点,若存在直线\(l\)过点\(F\)交双曲线\(C\)的右支于\(A\),\(B\)两点,使\( \overrightarrow{OA}⋅ \overrightarrow{OB}=0\),则双曲线离心率的取值范围是 ______ .
            • 7.
              直线\(l\):\(kx-y-2k=0\)与双曲线\(x^{2}-y^{2}=2\)仅有一个公共点,则实数\(k\)的值为\((\)  \()\)
              A.\(-1\)或\(1\)
              B.\(-1\)
              C.\(1\)
              D.\(1\),\(-1\),\(0\)
            • 8.
              设双曲线\(C\):\( \dfrac {x^{2}}{2}- \dfrac {y^{2}}{3}=1\),\(F_{1}\),\(F_{2}\)为其左右两个焦点.
              \((1)\)设\(O\)为坐标原点,\(M\)为双曲线\(C\)右支上任意一点,求\( \overrightarrow{OM}\cdot \overrightarrow{F_{1}M}\)的取值范围;
              \((2)\)若动点\(P\)与双曲线\(C\)的两个焦点\(F_{1}\),\(F_{2}\)的距离之和为定值,且\(\cos ∠F_{1}PF_{2}\)的最小值为\(- \dfrac {1}{9}\),求动点\(P\)的轨迹方程.
            • 9.

              \((1)\)已知向量\( \overrightarrow{a}=(2,-1), \overrightarrow{b}=(1,3) \),且\(\overrightarrow{a}\bot (\overrightarrow{a}+m\overrightarrow{b})\),则\(m=\)__________.

              \((2)\)已知点\(P\left( \sin \dfrac{3}{4}\pi ,\cos \dfrac{3}{4}\pi \right)\)落在角\(\theta \)的终边上,且\(\theta \in \left[ 0,2\pi \right)\),则\(\tan \left( \theta +\dfrac{\pi }{3} \right)\)的值为___________.

              \((3)\)已知三棱锥\(S-ABC\)的所有顶点都在以\(O\)为球心的球面上,\(\Delta ABC\)是边长为\(1\)的正三角形,\(SC\)为球\(O\)的直径,若三棱锥\(S-ABC\)的体积为\(\dfrac{\sqrt{11}}{6}\),则球\(O\)的表面积为___________\(.\) 

              \((4)\)已知\({{F}_{1}},{{F}_{2}}\)为双曲线\(\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1\left( a > 0,b > 0 \right)\)的左、右焦点,\(O\)为坐标原点,点\(P\)在双曲线的左支上,点\(M\)在直线\(x=\dfrac{{{a}^{2}}}{c}\left( c=\sqrt{{{a}^{2}}+{{b}^{2}}} \right)\)上,且满足\(\overrightarrow{{{F}_{1}}O}=\overrightarrow{PM},\overrightarrow{OP}=\lambda \left( \dfrac{\overrightarrow{O{{F}_{1}}}}{\overrightarrow{\left| O{{F}_{1}} \right|}}+\dfrac{\overrightarrow{OM}}{\overrightarrow{\left| OM \right|}} \right)\left( \lambda > 0 \right)\),则该双曲线的离心率为__________.

            • 10.

              双曲线\(C\):\({{x}^{2}}-\dfrac{{{y}^{2}}}{3}=1\)的左顶点为\(A\),右焦点为\(F\),过点\(F\)作一条直线与双曲线\(C\)的右支交于点\(P\),\(Q\),连接\(PA\),\(QA\)分别与直线\(l\):\(x=\dfrac{1}{2}\)交于点\(M\),\(N\),则\(∠MFN=\)


              A.\(\dfrac{\mathrm{ }\!\!\pi\!\!{ }}{6}\)
              B.\(\dfrac{\mathrm{ }\!\!\pi\!\!{ }}{3}\)
              C.\(\dfrac{\mathrm{ }\!\!\pi\!\!{ }}{2}\)
              D.\(\dfrac{2\mathrm{ }\!\!\pi\!\!{ }}{3}\)
            0/40

            进入组卷