优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              设等差数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),且满足\(S_{2014} > 0\),\(S_{2015} < 0\),对任意正整数\(n\),都有\(|a_{n}|\geqslant |a_{k}|\),则\(k\)的值为\((\)  \()\)
              A.\(1006\)
              B.\(1007\)
              C.\(1008\)
              D.\(1009\)
            • 2.
              已知数列\(\{a_{n}\}\)满足\(a_{7}=15\),且点\((a_{n},a_{n+1})(n∈N^{*})\)在函数\(y=x+2\)的图象上.
              \((1)\)求数列\(\{a_{n}\}\)的通项公式;
              \((2)\)设\(b_{n}=3^{a_{n}}\),求数列\(\{b_{n}\}\)的前\(n\)项和\(T_{n}\).
            • 3.
              已知数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),且满足\(S_{n}=(-1)^{n}\cdot a_{n}- \dfrac {1}{2^{n}}\),记\(b_{n}=8a_{2}\cdot 2^{n-1}\),若对任意的\(n∈N^{*}\),总有\(λb_{n}-1 > 0\)成立,则实数\(λ\)的取值范围为 ______ .
            • 4.
              已知\(f(x)= \begin{cases} \overset{(2a-1)x+4,x\leqslant 1}{a^{x},x > 1}\end{cases}\)定义域为\(R\),数列\(\{a_{n}\}(n∈N^{*}),a_{n}=f(n)\)是递增数列,则\(a\)的取值范围是\((\)  \()\)
              A.\((1,+∞)\)
              B.\(( \dfrac {1}{2},+∞)\)
              C.\((1,3)\)
              D.\((3,+∞)\)
            • 5.
              已知数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),\(a_{1}=1\),且满足\(a_{n}a_{n+1}=2S_{n}\),数列\(\{b_{n}\}\)满足\(b_{1}=15\),\(b_{n+1}-b_{n}=2n\),则数列\(\{ \dfrac {b_{n}}{a_{n}}\}\)中第 ______ 项最小.
            • 6.
              在数列\(1\),\(2\),\( \sqrt {7}, \sqrt {10}, \sqrt {13}\),\(…\)中,\(2 \sqrt {19}\)是这个数列的\((\)  \()\)
              A.第\(16\)项
              B.第\(24\)项
              C.第\(26\)项
              D.第\(28\)项
            • 7.
              设\(f(x)=f_{1}(x)= \dfrac {x}{1+x},f_{n}(x)=f_{n-1}[f(x)](n\geqslant 2,n∈N_{+})\),则\(f(1)+f(2)+…+f(n)+f_{1}(1)+f_{2}(1)+…+f_{n}(1)=\) ______ .
            • 8.
              已知数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),且\(S_{n}=2a_{n}-1\),则\( \dfrac {S_{6}}{a_{6}}=(\)  \()\)
              A.\( \dfrac {63}{32}\)
              B.\( \dfrac {31}{16}\)
              C.\( \dfrac {123}{64}\)
              D.\( \dfrac {127}{128}\)
            • 9.
              已知\(\{a_{n}\}\)是等差数列,\(S_{n}\)为\(\{a_{n}\}\)的前\(n\)项和,若\(a_{1}=5\),\(S_{4}=8\),则\(nS_{n}\)最大值为\((\)  \()\)
              A.\(16\)
              B.\(25\)
              C.\(27\)
              D.\(32\)
            • 10.
              已知数列\(\{a_{n}\}\)中\(a_{1}=1\),前\(n\)项和为\(S_{n}\),若对任意的\(n∈N*\),均有\(S_{n}=a_{n+k}-k(k\)是常数,且\(k∈N*)\)成立,则称数列\(\{a_{n}\}\)为“\(H(k)\)数列”.
              \((1)\)若数列\(\{a_{n}\}\)为“\(H(1)\)数列”,求数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}\);
              \((2)\)若数列\(\{a_{n}\}\)为“\(H(2)\)数列”,且\(a_{2}\)为整数,试问:是否存在数列\(\{a_{n}\}\),使得\(|a \;_{ n }^{ 2 }-a_{n-1}a_{n+1}|\leqslant 40\)对一切\(n\geqslant 2\),\(n∈N*\)恒成立?如果存在,求出这样数列\(\{a_{n}\}\)的\(a_{2}\)的所有可能值,如果不存在,请说明理由;
              \((3)\)若数列\(\{a_{n}\}\)为“\(H(k)\)数列”,且\(a_{1}=a_{2}=…=a_{k}=1\),证明:\(a_{n+2k}\geqslant (1+ \dfrac {1}{2^{k-1}})^{n-k}\).
            0/40

            进入组卷