优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              已知椭圆\(C\):\( \dfrac {x^{2}}{a^{2}}+ \dfrac {y^{2}}{b^{2}}=1(a > b > 0)\)过点\((2,0)\),且椭圆\(C\)的离心率为\( \dfrac {1}{2}\).
              \((\)Ⅰ\()\)求椭圆\(C\)的方程;
              \((\)Ⅱ\()\)若动点\(P\)在直线\(x=-1\)上,过\(P\)作直线交椭圆\(C\)于\(M\),\(N\)两点,且\(P\)为线段\(MN\)中点,再过\(P\):作直线\(l⊥MN.\)求直线\(l\)是否恒过定点,如果是则求出该定点的坐标,不是请说明理由.
            • 2.
              已知抛物线\(G\):\(y^{2}=2px(p > 0)\),过焦点\(F\)的动直线\(l\)与抛物线交于\(A\),\(B\)两点,线段\(AB\)的中点为\(M\).
              \((1)\)当直线\(l\)的倾斜角为\( \dfrac {π}{4}\)时,\(|AB|=16.\)求抛物线\(G\)的方程;
              \((2)\)对于\((1)\)问中的抛物线\(G\),若点\(N(3,0)\),求证:\(|AB|-2|MN|\)为定值,并求出该定值.
            • 3.
              已知椭圆\(C: \dfrac {x^{2}}{a^{2}}+ \dfrac {y^{2}}{b^{2}}=1(a > b > 0)\)的左、右焦点与其短轴的一个端点是正三角形的三个顶点,点\(D(1, \dfrac {3}{2})\)在椭圆\(C\)上,直线\(l\):\(y=kx+m\)与椭圆\(C\)相交于\(A\),\(P\)两点,与\(x\)轴,\(y\)轴分别相交于点\(N\)和\(M\),且\(|PM|=|MN|\),点\(Q\)是点\(P\)关于\(x\)轴的对称点,\(QM\)的延长线交椭圆\(C\)于点\(B\),过点\(A\),\(B\)分别作\(x\)轴的垂线,垂足分别为\(A_{1}\),\(B_{1}\).
              \((1)\)求椭园\(C\)的方程
              \((2)\)是否存在直线\(l\),使得点\(N\)平分线段\(A_{1}B_{1}\)?若存在,求出直线\(l\)的方程;若不存在,请说明理由
            • 4.
              已知椭圆\( \dfrac {x^{2}}{a^{2}}+ \dfrac {y^{2}}{b^{2}}=1(a > b > 0)\)的离心率\(e= \dfrac { \sqrt {3}}{2}\),连接椭圆的四个顶点得到的菱形的面积为\(4\).
              \((1)\)求椭圆的方程.
              \((2)\)设直线\(l\)与椭圆相交于不同的两点\(A\),\(B\),已知点\(A\)的坐标为\((-a,0)\),点\(Q(0,y_{0})\)在线段\(AB\)的垂直平分线上,且\( \overrightarrow{QA}⋅ \overrightarrow{QB}=4\),求\(y_{0}\)的值.
            • 5.
              已知椭圆\(C: \dfrac {x^{2}}{a^{2}}+ \dfrac {y^{2}}{b^{2}}=1(a > b > 0)\),\(F_{1}(-1,0)\),\(F_{2}(1,0)\)分别是椭圆的左、右焦点,过点\(F_{2}(1,0)\)作直线\(l\)于椭圆\(C\)交于\(A\),\(B\)两点,\(\triangle ABF_{1}\)的周长为\(4 \sqrt {3}\).
              \((I)\)求椭圆\(C\)的方程;
              \((\)Ⅱ\()\)若\(OA⊥OB.\)求直线\(l\)的方程.
            • 6.
              已知椭圆\(C\):\( \dfrac {x^{2}}{a^{2}}+ \dfrac {y^{2}}{b^{2}}=1(a > b > 0)\)的两个焦点分别为\(F_{1}\),\(F_{2}\),离心率为\( \dfrac {1}{2}.\)设过点\(F_{2}\)的直线\(l\)与椭圆\(C\)相交于不同两点\(A\),\(B\),\(\triangle AB F_{ 1 }\)周长为\(8\).
              \((\)Ⅰ\()\)求椭圆\(C\)的标准方程;
              \((\)Ⅱ\()\)已知点\(T(4,0)\),证明:当直线\(l\)变化时,总有\(TA\)与\(TB\)的斜率之和为定值.
            • 7.
              已知椭圆\(C: \dfrac {x^{2}}{a^{2}}+ \dfrac {y^{2}}{b^{2}}=1\;(a > b > 0)\)过\(A(2,0)\),\(B(0,1)\)两点.
              \((\)Ⅰ\()\)求椭圆\(C\)的方程及离心率;
              \((\)Ⅱ\()\)设点\(Q\)在椭圆\(C\)上\(.\)试问直线\(x+y-4=0\)上是否存在点\(P\),使得四边形\(PAQB\)是平行四边形?若存在,求出点\(P\)的坐标;若不存在,说明理由.
            • 8.
              已知椭圆\(C\):\( \dfrac {x^{2}}{a^{2}}+ \dfrac {y^{2}}{b^{2}}=1(a > b > 0)\)的离心率为\( \dfrac { \sqrt {3}}{2}\),右顶点为\(A(2,0)\).
              \((\)Ⅰ\()\)求椭圆\(C\)的方程;
              \((\)Ⅱ\()\)过点\((1,0)\)的直线\(l\)交椭圆于\(B\),\(D\)两点,设直线\(AB\)斜率为\(k_{1}\),直线\(AD\)斜率为\(k_{2}\),求证:\(k_{1}k_{2}\)为定值.
            • 9.
              已知椭圆\(C: \dfrac {x^{2}}{a^{2}}+ \dfrac {y^{2}}{b^{2}}=1(a > b > 0)\)经过点\(M(-2,-1)\),离心率为\( \dfrac { \sqrt {2}}{2}.\)过点\(M\)作倾斜角互补的两条直线分别与椭圆\(C\)交于异于\(M\)的另外两点\(P\)、\(Q\).
              \((I)\)求椭圆\(C\)的方程;
              \((II)\)试判断直线\(PQ\)的斜率是否为定值,证明你的结论.
            • 10.
              已知椭圆\(C_{1}: \dfrac {x^{2}}{a^{2}}+ \dfrac {y^{2}}{b^{2}}=1(a > b > 0)\)的右顶点与抛物线\(C_{2}:y^{2}=2px(p > 0)\)的焦点重合,椭圆\(C_{1}\)的离心率为\( \dfrac {1}{2}\),过椭圆\(C_{1}\)的右焦点\(F\)且垂直于\(x\)轴的直线截抛物线所得的弦长为\(4 \sqrt {2}\).
              \((1)\)求椭圆\(C_{1}\)和抛物线\(C_{2}\)的方程;
              \((2)\)过点\(A(-2,0)\)的直线\(l\)与\(C_{2}\)交于\(M\),\(N\)两点,点\(M\)关于\(x\)轴的对称点为\(M{{'}}\),证明:直线\(M{{'}}N\)恒过一定点.
            0/40

            进入组卷