优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              设\(\triangle A_{n}B_{n}C_{n}\)的三边长分别是\(a_{n}\),\(b_{n}\),\(c_{n}\),\(\triangle A_{n}B_{n}C_{n}\)的面积为\(S_{n}\),\(n∈N^{*}\),若\(b_{1} > c_{1}\),\(b_{1}+c_{1}=2a_{1}\),\(b_{n+1}= \dfrac {a_{n}+c_{n}}{2},c_{n+1}= \dfrac {a_{n}+b_{n}}{2}\),则\((\)  \()\)
              A.\(\{S_{n}\}\)为递减数列
              B.\(\{S_{n}\}\)为递增数列
              C.\(\{S_{2n-1}\}\)为递增数列,\(\{S_{2n}\}\)为递减数列
              D.\(\{S_{2n-1}\}\)为递减数列,\(\{S_{2n}\}\)为递增数列
            • 2.
              已知定义在\(R\)上的函数\(f(x)\)是奇函数且满足,\(f( \dfrac {3}{2}-x)=f(x)\),\(f(-2)=-3\),数列\(\{a_{n}\}\)满足\(a_{1}=-1\),且\(S_{n}=2a_{n}+n\),\((\)其中\(S_{n}\)为\(\{a_{n}\}\)的前\(n\)项和\().\)则\(f(a_{5})+f(a_{6})=(\)  \()\)
              A.\(3\)
              B.\(-2\)
              C.\(-3\)
              D.\(2\)
            • 3.
              已知数列\(\{a_{n}\}\)满足:\(a_{1}=1\),\(a_{n+1}= \dfrac {a_{n}}{a_{n}+2}(n∈N^{*})\)若\(b_{n+1}=(n-2λ)\cdot ( \dfrac {1}{a_{n}}+1)(n∈N^{*})\),\(b_{1}=- \dfrac {3}{2}λ\),且数列\(\{b_{n}\}\)是单调递增数列,则实数\(λ\)的取值范围是\((\)  \()\)
              A.\(λ < \dfrac {4}{5}\)
              B.\(λ < 1\)
              C.\(λ < \dfrac {3}{2}\)
              D.\(λ < \dfrac {2}{3}\)
            • 4.
              已知数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),且\(S_{n}=2a_{n}-2(n∈N^{*}).\)
              \((1)\)求\(\{a_{n}\}\)的通项公式;
              \((2)\)设\(b_{n+1}=2b_{n}-2^{n+1}\),\(b_{1}=8\),\(T_{n}\)是数列\(\{b_{n}\}\)的前\(n\)项和,求正整数\(k\),使得对任意\(n∈N^{*}\)均有\(T_{k}\geqslant T_{n}\)恒成立;
              \((3)\)设\(c_{n}= \dfrac {a_{\;n\;+\;1}}{(1+a_{n})(1+a_{\;n\;+\;1})}\),\(R_{n}\)是数列\(\{c_{n}\}\)的前\(n\)项和,若对任意\(n∈N^{*}\)均有\(R_{n} < λ\)恒成立,求\(λ\)的最小值.
            • 5.

              定义:称\(\dfrac{n}{{{P}_{1}}+{{P}_{2}}+...+{{P}_{n}}}\)为\(n\)个正数\(P_{1}\),\(P_{2}\),\(…P_{n}\)的“均倒数”,已知数列\(\{a_{n}\}\)的前\(n\)项的“均倒数”为\(\dfrac{1}{n+2}\).

              \((1)\)求\(\{a_{n}\}\)的通项公式;

              \((2)\)设\({{c}_{n}}=\dfrac{{{a}_{n}}}{{{3}^{n}}}\),试判断并说明数列\(\{c_{n}\}\)的单调性;

              \((3)\)求数列\(\{c_{n}\}\)的前\(n\)项和\(T_{n}\).

            • 6.

              已知等差数列\(\{\)\(a_{n}\)\(\}\)的首项\({{a}_{1}}=\dfrac{1}{2}\),前三项和为\(\dfrac{9}{2}\),点\(P_{n}\)\((\)\(a_{n}\)\(b_{n}\)\()(\)\(n\)\(∈N^{*})\)在函数\(y\)\(=\log _{3}2\)\(x\)的图象上.

              \((1)\)求数列\(\{\)\(a_{n}\)\(\}\)和\(\{\)\(b_{n}\)\(\}\)的通项公式;

              \((2)\)若\({{c}_{n}}={{3}^{{{b}_{n}}}}+{{2}^{n}}\),求数列\(\{\)\(c_{n}\)\(\}\)的前\(n\)项和\(S_{n}\)

            • 7.
              设数列\(\{a_{n}\}\)的通项公式为\(a_{n}=n^{2}+bn\),若数列\(\{a_{n}\}\)是单调递增数列,则实数\(b\)的取值范围为 ______ .
            • 8.
              已知数列\(\{a_{n}\}\)为等比数列,其前\(n\)项和为\(S_{n}\),已知\(a_{1}+a_{4}=- \dfrac {7}{16}\),且对于任意的\(n∈N^{*}\)有\(S_{n}\),\(S_{n+2}\),\(S_{n+1}\)成等差数列;
              \((\)Ⅰ\()\)求数列\(\{a_{n}\}\)的通项公式;
              \((\)Ⅱ\()\)已知\(b_{n}=n(n∈N_{+})\),记\(T_{n}=| \dfrac {b_{1}}{a_{1}}|+| \dfrac {b_{2}}{a_{2}}|+| \dfrac {b_{3}}{a_{3}}|+…+| \dfrac {b_{n}}{a_{n}}|\),若\((n-1)^{2}\leqslant m(T_{n}-n-1)\)对于\(n\geqslant 2\)恒成立,求实数\(m\)的范围.
            • 9.
              已知数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),且\(S_{n}=2a_{n}-2(n∈N^{*}).\)
              \((1)\)求数列\(\{a_{n}\}\)的通项公式;
              \((2)\)若数列\(\{b_{n}\}\)满足\( \dfrac {1}{a_{n}}= \dfrac {b_{1}}{2+1}- \dfrac {b_{2}}{2^{2}+1}+ \dfrac {b_{3}}{2^{3}+1}-…+(-1)^{n+1} \dfrac {b_{n}}{2^{n}+1}\),求数列\(\{b_{n}\}\)的通项公式;
              \((3)\)在\((2)\)的条件下,设\(c_{n}=2^{n}+λb_{n}\),问是否存在实数\(λ\)使得数列\(\{c_{n}\}(n∈N^{*})\)是单调递增数列?若存在,求出\(λ\)的取值范围;若不存在,请说明你的理由.
            • 10.
              已知数列\(\{a_{n}\}\)的首项为\(1\),\(S_{n}\)为数列\(\{a_{n}\}\)的前\(n\)项和,且满足\(S_{n+1}=qS_{n}+1\),其中\(q > 0\),\(n∈N^{*}\),又\(2a_{2}\),\(a_{3}\),\(a_{2}+2\)成等差数列.
              \((\)Ⅰ\()\)求数列\(\{a_{n}\}\)的通项公式;
              \((\)Ⅱ\()\)记\(b_{n}=2a_{n}-λ(\log _{2}a_{n+1})^{2}\),若数列\(\{b_{n}\}\)为递增数列,求\(λ\)的取值范围.
            0/40

            进入组卷