优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              已知数列\(\{a_{n}\}\)满足\(a_{7}=15\),且点\((a_{n},a_{n+1})(n∈N^{*})\)在函数\(y=x+2\)的图象上.
              \((1)\)求数列\(\{a_{n}\}\)的通项公式;
              \((2)\)设\(b_{n}=3^{a_{n}}\),求数列\(\{b_{n}\}\)的前\(n\)项和\(T_{n}\).
            • 2.
              函数\(y= \sqrt {9-(x-5)^{2}}\)的图象上存在不同的三点到原点的距离构成等比数列,则以下不可能成为等比数列的公比的数是\((\)  \()\)
              A.\( \dfrac {3}{4}\)
              B.\( \sqrt {2}\)
              C.\( \sqrt {3}\)
              D.\( \sqrt {5}\)
            • 3.
              在数列\(1\),\(2\),\( \sqrt {7}, \sqrt {10}, \sqrt {13}\),\(…\)中,\(2 \sqrt {19}\)是这个数列的\((\)  \()\)
              A.第\(16\)项
              B.第\(24\)项
              C.第\(26\)项
              D.第\(28\)项
            • 4.
              如果\(n\)项有穷数列\(\{a_{n}\}\)满足\(a_{1}=a_{n}\),\(a_{2}=a_{n-1}\),\(…\),\(a_{n}=a_{1}\),即\(a_{i}=a_{n-i+1}(i=1,2,…,n)\),则称有穷数列\(\{a_{n}\}\)为“对称数列”\(.\)例如,由组合数组成的数列\( C_{ n }^{ 0 }, C_{ n }^{ 1 },…, C_{ n }^{ n-1 }, C_{ n }^{ n }\)就是“对称数列”.
              \((\)Ⅰ\()\)设数列\(\{b_{n}\}\)是项数为\(7\)的“对称数列”,其中\(b_{1}\),\(b_{2}\),\(b_{3}\),\(b_{4}\)成等比数列,且\(b_{2}=3\),\(b_{5}=1.\)依次写出数列\(\{b_{n}\}\)的每一项;
              \((\)Ⅱ\()\)设数列\(\{c_{n}\}\)是项数为\(2k-1(k∈N^{*}\)且\(k\geqslant 2)\)的“对称数列”,且满足\(|c_{n+1}-c_{n}|=2\),记\(S_{n}\)为数列\(\{c_{n}\}\)的前\(n\)项和;
              \((ⅰ)\)若\(c_{1}\),\(c_{2}\),\(…c_{k}\)是单调递增数列,且\(c_{k}=2017.\)当\(k\)为何值时,\(S_{2k-1}\)取得最大值?
              \((ⅱ)\)若\(c_{1}=2018\),且\(S_{2k-1}=2018\),求\(k\)的最小值.
            • 5.
              已知:在数列\(\{a_{n}\}\)中,\(a_{1}=1\),\(a_{n+1}= \dfrac {a_{n}}{3a_{n}+1}\),判断\(\{a_{n}\}\)的单调性.
              小明同学给出了如下解答思路,请补全解答过程.
              第一步,计算:
              根据已知条件,计算出:\(a_{2}=\) ______ ,\(a_{3}=\) ______ ,\(a_{4}=\) ______ .
              第二步,猜想:
              数列\(\{a_{n}\}\)是 ______ \((\)填递增、递减\()\)数列.
              第三步,证明:
              因为\(a_{n+1}= \dfrac {a_{n}}{3a_{n}+1}\),所以\( \dfrac {1}{a_{n+1}}= \dfrac {3a_{n}+1}{a_{n}}= \dfrac {1}{a_{n}}+\) ______ .
              因此可以判断数列\(\{ \dfrac {1}{a_{n}}\}\)是首项\( \dfrac {1}{a_{1}}=\) ______ ,公差\(d=\) ______ 的等差数列.
              故数列\(\{ \dfrac {1}{a_{n}}\}\)的通项公式为 ______ .
              且由此可以判断出:
              数列\(\{ \dfrac {1}{a_{n}}\}\)是 ______ \((\)填递增、递减\()\)数列,且各项均为 ______ \((\)填正数、负数或零\()\).
              所以数列\(\{a_{n}\}\)是 ______ \((\)填递增、递减\()\)数列.
            • 6.
              设\(a_{n}=-n^{2}+9n+10\),则数列\(\{a_{n}\}\)前\(n\)项和最大时\(n\)的值为\((\)  \()\)
              A.\(9\)
              B.\(10\)
              C.\(9\)或\(10\)
              D.\(12\)
            • 7.

              对于无穷数列\(\{{{a}_{n}}\}\)\(\{{{b}_{n}}\}\),若\({{b}_{k}}=\max \{{{a}_{1}},{{a}_{2}},\cdots ,{{a}_{k}}\}-\min \{{{a}_{1}},{{a}_{2}},\cdots ,{{a}_{k}}\}(k=1,2,3,\cdots )\),则称\(\{{{b}_{n}}\}\)\(\{{{a}_{n}}\}\)的“收缩数列”\(.\) 其中,\(\max \{{{a}_{1}},{{a}_{2}},\cdots ,{{a}_{k}}\}\)\(\min \{{{a}_{1}},{{a}_{2}},\cdots ,{{a}_{k}}\}\)分别表示\({{a}_{1}},{{a}_{2}},\cdots ,{{a}_{k}}\)中的最大数和最小数.已知\(\{{{a}_{n}}\}\)为无穷数列,其前\(n\)项和为\({{S}_{n}}\),数列\(\{{{b}_{n}}\}\)\(\{{{a}_{n}}\}\)的“收缩数列”.

              \((\)Ⅰ\()\)若\({{a}_{n}}=2n+1\),求\(\{{{b}_{n}}\}\)的前\(n\)项和;
              \((\)Ⅱ\()\)证明:\(\{{{b}_{n}}\}\)的“收缩数列”仍是\(\{{{b}_{n}}\}\);

              \((\)Ⅲ\()\)若\({{S}_{1}}+{{S}_{2}}+\cdots +{{S}_{n}}=\dfrac{n(n+1)}{2}{{a}_{1}}+\dfrac{n(n-1)}{2}{{b}_{n}}(n=1,2,3,\cdots )\),求所有满足该条件的\(\{{{a}_{n}}\}\).

            • 8.
              能推出\(\{a_{n}\}\)是递增数列的是\((\)  \()\)
              A.\(\{a_{n}\}\)是等差数列且\(\{ \dfrac {a_{n}}{n}\}\)递增
              B.\(S_{n}\)是等差数列\(\{a_{n}\}\)的前\(n\)项和,且\(\{ \dfrac {S_{n}}{n}\}\)递增
              C.\(\{a_{n}\}\)是等比数列,公比为\(q > 1\)
              D.等比数列\(\{a_{n}\}\),公比为\(0 < q < 1\)
            • 9.
              已知数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}=n^{2}+1(n∈N^{*})\),则它的通项公式是 ______ .
            • 10.
              已知数列\(\{a_{n}\}\)的通项公式为\(a_{n}=an^{2}+n(n∈N*)\),若满足\(a_{1} < a_{2} < a_{3} < a_{4} < a_{5} < a_{6}\),且\(a_{n} > a_{n+1}\),对任意\(n\geqslant 10\)恒成立,则实数\(a\)的取值范围是 ______ .
            0/40

            进入组卷