优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              已知椭圆\(C: \dfrac {x^{2}}{a^{2}}+ \dfrac {y^{2}}{b^{2}}=1(a > b > 0)\)的离心率为\( \dfrac { \sqrt {3}}{2}\),点\(( \sqrt {2}, \dfrac { \sqrt {2}}{2})\)在\(C\)上.
              \((1)\)求椭圆\(C\)的方程;
              \((2)\)若直线\(l\)与椭圆\(C\)交于\(P\),\(Q\)两点,\(O\)为坐标原点,且\(OP⊥OQ\),求\(\triangle OPQ\)面积的最小值.
            • 2.

              已知椭圆\(C: \dfrac {x^{2}}{a^{2}}+ \dfrac {y^{2}}{b^{2}}=1(a > b > 0)\)过抛物线\(M\):\(x^{2}=4y\)的焦点\(F\),\(F_{1}\),\(F_{2}\)分别是椭圆\(C\)的左、右焦点,且\( \overrightarrow{F_{1}F}\cdot \overrightarrow{F_{1}F_{2}}=6\).
              \((1)\)求椭圆\(C\)的标准方程;
              \((2)\)若直线\(l\)与抛物线\(M\)相切,且与椭圆\(C\)交于\(A\),\(B\)两点,求\(\triangle OAB\)面积的最大值.
            • 3.
              已知椭圆\(C\):\( \dfrac {x^{2}}{a^{2}}+ \dfrac {y^{2}}{b^{2}}=1(a > b > 0)\)的左右焦点分别为\(F_{1}\),\(F_{2}\),若椭圆上一点满足\(P( \dfrac {2 \sqrt {6}}{3},-1)\)满足\(|PF_{1}|+|PF_{2}|=4\),过点\(R(4,0)\)的直线\(l\)与椭圆\(C\)交于两点\(M\),\(N\).
              \((\)Ⅰ\()\)求椭圆\(C\)的方程;
              \((\)Ⅱ\()\)过点\(M\)作\(x\)轴的垂线,交椭圆\(C\)于\(G\),求证:存在实数\(λ\),使得\( \overrightarrow{GF_{2}}=λ \overrightarrow{F_{2}N}\).
            • 4.
              设椭圆\( \dfrac {x^{2}}{a^{2}}+ \dfrac {y^{2}}{b^{2}}=1(a > b > 0)\)的右焦点与抛物线\(y^{2}=16x\)的焦点相同,离心率为\( \dfrac { \sqrt {6}}{3}\),则此椭圆的方程为 ______ .
            • 5.
              已知椭圆\(C\):\( \dfrac {x^{2}}{a^{2}}+ \dfrac {y^{2}}{b^{2}}=1(a > b > 0)\)的左右顶点分别为\(A_{1}\),\(A_{2}\),左右焦点为分别为\(F_{1}\),\(F_{2}\),焦距为\(2\),离心率为\( \dfrac {1}{2}\).
              \((1)\)求椭圆\(C\)的标准方程;
              \((2)\)若\(P\)为椭圆上一动点,直线\(l_{1}\)过点\(A_{1}\)且与\(x\)轴垂直,\(M\)为直线\(A_{2}P\)与\(l_{1}\)的交点,\(N\)为直线\(A_{1}P\)与直线\(MF_{2}\)的交点,求证:点\(N\)在一个定圆上.
            • 6.
              已知椭圆\(C\):\( \dfrac {x^{2}}{a^{2}}+ \dfrac {y^{2}}{b^{2}}=1(a > b > 0)\)的左、右焦点分别为\(F_{1}\),\(F_{2}\),且离心率为\( \dfrac { \sqrt {2}}{2}\),\(M\)为椭圆上任意一点,当\(∠F_{1}MF_{2}=90^{\circ}\)时,\(\triangle F_{1}MF_{2}\)的面积为\(1\).
              \((\)Ⅰ\()\)求椭圆\(C\)的方程;
              \((\)Ⅱ\()\)已知点\(A\)是椭圆\(C\)上异于椭圆顶点的一点,延长直线\(AF_{1}\),\(AF_{2}\)分别与椭圆交于点\(B\),\(D\),设直线\(BD\)的斜率为\(k_{1}\),直线\(OA\)的斜率为\(k_{2}\),求证:\(k_{1}⋅k_{2}\)为定值.
            • 7.
              已知椭圆\( \dfrac {x^{2}}{a^{2}}+ \dfrac {y^{2}}{b^{2}}=1(a > b > 0)\)的左右焦点分别为\(F_{1}\)和\(F_{2}\),由\(4\)个点\(M(-a,b)\)、\(N(a,b)\)、\(F_{2}\)和\(F_{1}\)组成了一个高为\( \sqrt {3}\),面积为\(3 \sqrt {3}\)的等腰梯形.
              \((1)\)求椭圆的方程;
              \((2)\)过点\(F_{1}\)的直线和椭圆交于两点\(A\)、\(B\),求\(\triangle F_{2}AB\)面积的最大值.
            • 8.
              已知椭圆\(C\):\( \dfrac {x^{2}}{a^{2}}+ \dfrac {y^{2}}{b^{2}}=1(a > b > 0)\)的左右焦点分别为\(F_{1}\),\(F_{2}\),离心率为\( \dfrac {1}{2}\),点\(A\)在椭圆\(C\)上,\(|AF_{1}|=2\),\(∠F_{1}AF_{2}=60^{\circ}\),过\(F_{2}\)与坐标轴不垂直的直线\(l\)与椭圆\(C\)交于\(P\),\(Q\)两点.
              \((\)Ⅰ\()\)求椭圆\(C\)的方程;
              \((\)Ⅱ\()\)若\(P\),\(Q\)的中点为\(N\),在线段\(OF_{2}\)上是否存在点\(M(m,0)\),使得\(MN⊥PQ\)?若存在,求实数\(m\)的取值范围;若不存在,说明理由.
            • 9.
              设椭圆\(C\):\( \dfrac {x^{2}}{a^{2}}+ \dfrac {y^{2}}{b^{2}}=1(a > b > 0)\)的一个顶点与抛物线\(x^{2}=4 \sqrt {3}y\)的焦点重合,\(F_{1}\),\(F_{2}\)分别是椭圆的左、右焦点,且离心率\(e= \dfrac {1}{2}\),过椭圆右焦点\(F_{2}\)的直线\(l\)与椭圆\(C\)交于\(NM\),两点.
              \((\)Ⅰ\()\)求椭圆\(C\)的方程;
              \((\)Ⅱ\()\)若\( \overrightarrow{OM}\cdot \overrightarrow{ON}=-2\),求直线\(l\)的方程;
              \((\)Ⅲ\()\)若\(AB\)是椭圆\(C\)经过原点\(O\)的弦,\(MN/\!/AB\),求证:\( \dfrac {|AB|^{2}}{|MN|}\)为定值.
            • 10.
              已知椭圆\(C\):\( \dfrac {x^{2}}{a^{2}}+ \dfrac {y^{2}}{b^{2}}=1\;(a > b > 0)\)的离心率为\( \dfrac { \sqrt {6}}{3}\),经过点\((0,1)\).
              \((\)Ⅰ\()\)求椭圆\(C\)的方程;
              \((\)Ⅱ\()\)设直线\(y=x\)与椭圆\(C\)交于\(A\),\(B\)两点,斜率为\(k\)的直线\(l\)与椭圆\(C\)交于\(M\),\(N\)两点,与直线\(y=x\)交于点\(P(\)点\(P\)与点\(A\),\(B\),\(M\),\(N\)不重合\()\).
              \((ⅰ)\)当\(k=-1\)时,证明:\(|PA||PB|=|PM||PN|\);
              \((ⅱ)\)写出\( \dfrac {|PA||PB|}{\;|PM||PN|}\)以\(k\)为自变量的函数式\((\)只需写出结论\()\).
            0/40

            进入组卷