优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.

              已知空间四边形\(ABCD\)中,\(E\)、\(H\)分别是\(AB\)、\(AD\)的中点,\(F\)、\(G\)分别是\(BC\)、\(CD\)上的点,且\( \dfrac{CF}{CB}= \dfrac{CG}{CD}= \dfrac{2}{3} \).
              求证:\((1)E\)、\(F\)、\(G\)、\(H\)四点共面;\((2)\)三条直线\(EF\)、\(GH\)、\(AC\)交于一点.

            • 2.

              如图所示,在正方体\(ABCD-A\)\(1\)\(B\)\(1\)\(C\)\(1\)\(D\)\(1\)中,\(E\)、\(F\)分别是\(AB\)和\(AA\)\(1\)的中点,如何证明“\(CE\),\(D_{1}F\),\(DA\)交于一点”?


            • 3.
              如图,在正方体\(ABCD-A\)\({\,\!}_{1}\) \(B\)\({\,\!}_{1}\) \(C\)\({\,\!}_{1}\) \(D\)\({\,\!}_{1}\) 中,\(O\)为正方形\(ABCD\)的中心,\(H\)为直线\(B\)\({\,\!}_{1}\) \(D\)与平面\(ACD\)\({\,\!}_{1}\) 的交点\(.\)求证:\(D\)\({\,\!}_{1}\) 、\(H\)、\(O\)三点共线.
            • 4.
              如图,在以\(A\),\(B\),\(C\),\(D\),\(E\),\(F\)为顶点的五面体中,面\(ABEF\)为矩形,\(AF⊥DF\),且二面角\(D-AF-E\)与二面角\(C-BE-F\)都等于\(α(0 < α < \dfrac {π}{2})\).
              \((\)Ⅰ\()\)证明:平面\(ABEF⊥\)平面\(EFDC\)
              \((\)Ⅱ\()\)求证:四边形\(EFDC\)为等腰梯形.
            • 5.
              已知\(\triangle ABC\)和\(\triangle A_{1}B_{1}C_{1}\)所在平面相交,并且\(AA_{1}\),\(BB_{1}\),\(CC_{1}\)交于一点.
              \((1)\)求证:\(AB\)和\(A_{1}B_{1}\)在同一平面内;
              \((2)\)若\(AB∩A_{1}B_{1}=M\),\(BC∩B_{1}C_{1}=N\),\(AC∩A_{1}C_{1}=P\),求证:\(M\),\(N\),\(P\)三点共线.
            • 6.

              如图\(1\),\(\Delta AF{{A}_{1}}\)中,\(FA=F{A}_{1},A{A}_{1}=8,CF=2 \),点\(B,C,D\)为线段\(A{{A}_{1}}\)的四等分点,线段\(BE,CF,DG\)互相平行,现沿\(BE,CF,DG\)折叠得到图\(2\)所示的几何体,此几何体的底面\(ABCD\)为正方形.

              \((1)\)证明:\(A,E,F,G\)四点共面;

              \((2)\)求四棱锥\(B-AEFG\)的体积.

            • 7.
              如图,已知直四棱柱\(ABCD-A_{1}B_{1}C_{1}D_{1}\)的底面是直角梯形,\(AB⊥BC\),\(AB/\!/CD\),\(E\),\(F\)分别是棱\(BC\),\(B_{1}C_{1}\)上的动点,且\(EF/\!/CC_{1}\),\(CD=DD_{1}=1\),\(AB=2\),\(BC=3\).
              \((\)Ⅰ\()\)证明:无论点\(E\)怎样运动,四边形\(EFD_{1}D\)都为矩形;
              \((\)Ⅱ\()\)当\(EC=1\)时,求几何体\(A-EFD_{1}D\)的体积.
            • 8.
              如图,在四棱锥\(P-ABCD\)中,\(PA⊥\)平面\(ABCD\),\(AC⊥AD\),\(AB⊥BC\),\(∠BCA=45^{\circ}\),\(AP=AD=AC=2\),\(E\)、\(F\)、\(H\)分别为\(PA\)、\(CD\)、\(PF\)的中点.
              \((\)Ⅰ\()\)设面\(PAB∩\)面\(PCD=l\),求证:\(CD/\!/l\);
              \((\)Ⅱ\()\)求证:\(AH⊥\)面\(EDC\).
            • 9. 如图,梯形\(ABCD\)中,\(CE⊥AD\)于\(E\),\(BF⊥AD\)于\(F\),且\(AF=BF=BC=1\),\(DE= \sqrt {2}\),现将\(\triangle ABF\),\(\triangle CDE\)分别沿\(BF\)与\(CE\)翻折,使点\(A\)与点\(D\)重合.
              \((\)Ⅰ\()\)设面\(ABF\)与面\(CDE\)相交于直线\(l\),求证:\(l/\!/CE\);
              \((\)Ⅱ\()\)试类比求解三角形的内切圆\((\)与三角形各边都相切\()\)半径的方法,求出四棱锥\(A-BCEF\)的内切球\((\)与四棱锥各个面都相切\()\)的半径.
            • 10.
              如图,在空间四边形\(ABCD\)中,\(E\),\(F\),\(G\),\(H\)分别是\(AB\),\(BC\),\(CD\),\(DA\)的中点.
              \((1)\)求证:四边形\(EFGH\)是平行四边形.
              \((2)\)求证:\(AC/\!/\)平面\(EFGH\).
            0/40

            进入组卷