优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              如图,四边形\(ABCD\)为正方形,\(PD⊥\)平面\(ABCD\),\(PD/\!/QA\),\(QA=AB= \dfrac {1}{2}PD\).
              \((\)Ⅰ\()\)证明:平面\(PQC⊥\)平面\(DCQ\)
              \((\)Ⅱ\()\)求二面角\(Q-BP-C\)的余弦值.
            • 2.
              如图\(1\),在直角梯形\(ABCD\)中,\(∠ADC=90^{\circ}\),\(CD/\!/AB\),\(AB=4\),\(AD=CD=2\),\(M\)为线段\(AB\)的中点\(.\)将\(\triangle ADC\)沿\(AC\)折起,使平面\(ADC⊥\)平面\(ABC\),得到几何体\(D-ABC\),如图\(2\)所示.
              \((\)Ⅰ\()\)求证:\(BC⊥\)平面\(ACD\);
              \((\)Ⅱ\()\)求二面角\(A-CD-M\)的余弦值.
            • 3.
              如图,在四棱锥\(P-ABCD\)中,\(PA⊥\)底面\(ABCD\),\(AD⊥AB\),\(AB/\!/DC\),\(AD=DC=AP=2\),\(AB=1\),点\(E\)为棱\(PC\)的中点.
              \((\)Ⅰ\()\)证明:\(BE⊥DC\);
              \((\)Ⅱ\()\)求直线\(BE\)与平面\(PBD\)所成角的正弦值;
              \((\)Ⅲ\()\)若\(F\)为棱\(PC\)上一点,满足\(BF⊥AC\),求二面角\(F-AB-P\)的余弦值.
            • 4.
              如图,在四棱锥\(S-ABCD\)中,\(SD⊥\)底面\(ABCD\),底面\(ABCD\)是矩形,且\(SD=AD= \sqrt {2}AB\),\(E\)是\(SA\)的中点.
              \((1)\)求证:平面\(BED⊥\)平面\(SAB\);
              \((2)\)求平面\(BED\)与平面\(SBC\)所成二面角\((\)锐角\()\)的大小.
            • 5.

              如图,四棱锥\(P-ABCD\)中,\(\triangle PAD\)为等边三角形,且平面\(PAD⊥\)平面\(ABCD\),\(AD=2BC=2\),\(AB⊥AD\),\(AB⊥BC\).

              \((1)\)证明:\(PC⊥BC\);

              \((2)\)若直线\(PC\)与平面\(ABCD\)所成角为\(60^{0}\),求二面角\(B-PC-D\)的余弦值.

            • 6.

              如图,在直三棱柱\(A_{1}B_{1}C_{1}—ABC\)中,\(AB⊥AC\),\(AB=AC=2\),\(A_{1}A=4\),点\(D\)是\(BC\)的中点.

              \((1)\)求异面直线\(A_{1}B\)与\(C_{1}D\)所成角的余弦值;

              \((2)\)求平面\(ADC_{1}\)与平面\(ABA_{1}\)所成二面角的正弦值.

            • 7.

              如图,在四棱锥\(P{-}ABCD\)中,\(AD{⊥}\)平面\(PCD\),\(PD{⊥}CD\),底面\(ABCD\)是梯形,\(AB{/\!/}DC\),\(AB{=}AD{=}PD{=}1\),\(CD{=}2AB\),\(Q\)为棱\(PC\)上一点.


              \((\)Ⅰ\()\)若点\(Q\)是\(PC\)的中点,证明:\(BQ{/\!/}\)平面\(PAD\);
              \((\)Ⅱ\()\overrightarrow{{PQ}}{=}\lambda\overrightarrow{{PC}}\)试确定\(\lambda\)的值使得二面角\(Q{-}BD{-}P\)为\(60^{{∘}}\).
            • 8. 如图,在正四棱锥\(P-ABCD\)中,\(PA=AB=a\),点\(E\)在棱\(PC\)上.
              \((1)\)问点\(E\)在何处时,\(PA/\!/\)平面\(EBD\),并加以证明;
              \((2)\)求二面角\(C-PA-B\)的余弦值.
            • 9.
              如图,在三棱柱\(ABC−{{A}_{1}}{{B}_{1}}{{C}_{1}}\)中,\(C{{C}_{1}}\bot \)平面\(ABC\),\(D\),\(E\),\(F\),\(G\)分别为\(A{{A}_{1}}\),\(AC\),\({{A}_{1}}{{C}_{1}}\),\(B{{B}_{1}}\)的中点,\(AB=BC=\sqrt{5}\),\(AC=A{{A}_{1}}=2\).

              \((\)Ⅰ\()\)求证:\(AC⊥\)平面\(BEF\);

              \((\)Ⅱ\()\)求二面角\(B−CD−C_{1}\)的余弦值;

              \((\)Ⅲ\()\)证明:直线\(FG\)与平面\(BCD\)相交.

            • 10. 如图,在以 \(A\)\(B\)\(C\)\(D\)\(E\)\(F\)为顶点的五面体中,面 \(ABEF\)为正方形, \(AF\)\(=2\) \(FD\),\(∠\) \(AFD\)\(=90^{\circ}\),且二面角 \(D\)\(­\) \(AF\)\(­\) \(E\)与二面角 \(C\)\(­\) \(BE\)\(­\) \(F\)都是\(60^{\circ}\).

              \((1)\)证明:平面\(ABEF\)\(⊥\)平面\(EFDC\)

              \((2)\)求二面角\(E\)\(­\)\(BC\)\(­\)\(A\)的余弦值.

            0/40

            进入组卷