优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.

              已知等差数列\(\{a_{n}\}\)满足:\(a_{4}=6\),\(a_{6}=10\).

              \((1)\)求数列\(\{a_{n}\}\)的通项公式;

              \((2)\)设等比数列\(\{b_{n}\}\)的各项均为正数,\(T_{n}\)为其前\(n\)项和,若\(b_{1}=1\),\(b_{3}=a_{3}\),求\(T_{n}\).

            • 2. 已知函数\(f(x)= \dfrac {3}{2}x+\ln (x-1)\),设数列\(\{a_{n}\}\)同时满足下列两个条件:\(①a_{n} > 0(n∈N^{*})\);\(②a_{n+1}=f′(a_{n}+1)\).
              \((\)Ⅰ\()\)试用\(a_{n}\)表示\(a_{n+1}\);
              \((\)Ⅱ\()\)记\(b_{n}=a_{2n}(n∈N^{*})\),若数列\(\{b_{n}\}\)是递减数列,求\(a_{1}\)的取值范围.
            • 3.
              已知等差数列\(\{a_{n}\}\)满足\(a_{1}+a_{2}=10\),\(a_{4}-a_{3}=2\).
              \((\)Ⅰ\()\)求\(\{a_{n}\}\)的通项公式;
              \((\)Ⅱ\()\)设等比数列\(\{b_{n}\}\)满足\(b_{2}=a_{3}\),\(b_{3}=a_{7}\),求数列\(\{b_{n}\}\)的前\(n\)项和.
            • 4.

              已知 \(\{{a}_{n}\} \) 为等差数列,前\(n\)项和为 \(S_{n}(n\)\(∈N*\)\()\) \(\{{b}_{n}\} \) 是首项为\(2\)的等比数列,且公比大于\(0\), \(b_{2}+b_{3}=12\)  \(b_{3}=a_{4}-2a_{1}\)  \(S_{11}=11b_{4}\) 

              \((\)Ⅰ\()\)求 \(\{{a}_{n}\} \) \(\{{b}_{n}\} \) 的通项公式;

              \((\)Ⅱ\()\)求数列 \(\{a_{2n}b_{2n-1}\}\) 的前\(n\)项和 \((n\)\(∈N*\)\()\)

            • 5.
              设数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),若对任意的正整数\(n\),总存在正整数\(m\),使得\(S_{n}=a_{m}\),则称\(\{a_{n}\}\)是“\(H\)数列”.
              \((1)\)若数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}=2^{n}(n∈N^{*})\),证明:\(\{a_{n}\}\)是“\(H\)数列”;
              \((2)\)设\(\{a_{n}\}\)是等差数列,其首项\(a_{1}=1\),公差\(d < 0\),若\(\{a_{n}\}\)是“\(H\)数列”,求\(d\)的值;
              \((3)\)证明:对任意的等差数列\(\{a_{n}\}\),总存在两个“\(H\)数列”\(\{b_{n}\}\)和\(\{c_{n}\}\),使得\(a_{n}=b_{n}+c_{n}(n∈N^{*})\)成立.
            • 6.

              在数列\(\{a_{n}\}\),\(\{b_{n}\}\)中,已知\(a_{1}=0\),\(a_{2}=1\),\(b_{1}=1\),\(b_{2}=\dfrac{1}{2}\),数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),数列\(\{b_{n}\}\)的前\(n\)项和为\(T_{n}\),且满足\(S_{n}+S_{n+1}=n^{2}\),\(2T_{n+2}=3T_{n+1}-T_{n}\),其中\(n\)为正整数.

              \((1)\) 求数列\(\{a_{n}\}\),\(\{b_{n}\}\)的通项公式.

              \((2)\) 问:是否存在正整数\(m\),\(n\),使得\(\dfrac{T_{n{+}1}\mathrm{{-}}m}{T_{n}\mathrm{{-}}m} > 1+b_{m+2}\)成立\(?\)若存在,求出所有符合条件的有序实数对\((m,n);\)若不存在,请说明理由.

            • 7.

              等比数列\(\{a_{n}\}\)中,已知\(a_{1}=2\),\(a_{4}=16\).

              \((1)\)求数列\(\{a_{n}\}\)的通项公式;

              \((2)\)若\(a_{3}\),\(a_{5}\)分别为等差数列\(\{b_{n}\}\)第\(3\)项和第\(5\)项,求数列\(\{b_{n}\}\)的通项公式及前\(n\)项和\(S_{n}\).

            • 8.
              设\(\{a_{n}\}\)是各项都为正数的等比数列,\(\{b_{n}\}\)是等差数列,且\(a_{1}=b_{1}=1\),\(a_{3}+b_{5}=13\),\(a_{5}+b_{3}=21\).
              \((1)\)求数列\(\{a_{n}\}\),\(\{b_{n}\}\)的通项公式;
              \((2)\)求数\(\{a_{n}b_{n}\}\)列前\(n\)项和\(T_{n}\).
            • 9. 数列\(\{ \)\(a_{n}\)\(\}\)的前 \(n\)项和为 \(S_{n}\)\(a\)\({\,\!}_{1}=1\), \(S_{n}\)\({\,\!}_{+1}=4\) \(a_{n}\)\(+2( \)\(n\)\(∈N^{*})\),设 \(b_{n}\)\(=\) \(a_{n}\)\({\,\!}_{+1}-2\) \(a_{n}\)

              \((1)\)求证:\(\{\)\(b_{n}\)\(\}\)是等比数列;

              \((2)\)设\(c_{n}\)\(= \dfrac{a_{n}}{3n-1}\),求证:\(\{\)\(c_{n}\)\(\}\)是等比数列.

            • 10.

              已知各项均不相同的等差数列\(\left\{ {{a}_{n}} \right\}\)的前四项和\({{S}_{4}}=14\),且\({{a}_{1}},{{a}_{3}},{{a}_{7}}\)成等比数列.

              \((\)Ⅰ\()\)求数列\(\left\{ {{a}_{n}} \right\}\)的通项公式;

              \((\)Ⅱ\()\)设\({{T}_{n}}\)为数列\(\left\{ \dfrac{1}{{{a}_{n}}\cdot {{a}_{n+1}}} \right\}\)的前\(n\)项和,求\({{T}_{n}}\).

            0/40

            进入组卷