优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              “十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于\( \sqrt[12]{2}.\)若第一个单音的频率为\(f\),则第八个单音的频率为\((\)  \()\)
              A.\( \sqrt[3]{2}f\)
              B.\( \sqrt[3]{2^{2}}f\)
              C.\( \sqrt[12]{2^{5}}f\)
              D.\( \sqrt[12]{2^{7}}f\)
            • 2.
              已知等比数列\(\{{{a}_{n}}\}\)满足\({{a}_{1}}=\dfrac{1}{4}\),\(a_{3}a_{5} =4({{a}_{4}}-1)\),则\(a_{2} =\)
              A.\(2\)
              B.\(1\)
              C.\(\dfrac{1}{2}\)

              D.\(\dfrac{1}{8}\)
            • 3.

              已知数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}=1+a\)\({S}_{n}=1+λ{a}_{n} \),其中\(\lambda \)\(0\)

              \((I)\)证明\(\{a\)\(n\)\(\}\)是等比数列,并求其通项公式

              \((II)\)若\({S}_{5}= \dfrac{31}{32} \) ,求\(\lambda \)

            • 4.
              等比数列\(\{ \)\(a_{n}\)\(\}\)满足 \(a\)\({\,\!}_{1}= 3\), \(a\)\({\,\!}_{1}+\) \(a\)\({\,\!}_{3} +\) \(a\)\({\,\!}_{5} = 21\),则 \(a\)\({\,\!}_{3}+\) \(a\)\({\,\!}_{5} +\) \(a\)\({\,\!}_{7} =(\)    \()\)
              A.\(21\)                  
              B.\(42\)                  
              C.\(63\)                  
              D.\(84\)
            • 5.

              已知\(\left\{ {{a}_{n}} \right\}\)是公差为\(3\)的等差数列,数列\(\left\{ {{b}_{n}} \right\}\)满足\({{b}_{1}}=1,{{b}_{2}}=\dfrac{1}{3},{{a}_{n}}{{b}_{n+1}}+{{b}_{n+1}}=n{{b}_{n}}\) .

               \((1)\)求\(\left\{ {{a}_{n}} \right\}\)的通项公式;

              \((2)\)求\(\left\{ {{b}_{n}} \right\}\)的前\(n\)项和。

            • 6.
              已知\(\{a_{n}\}\)是各项均为正数的等比数列,且\(a_{1}+a_{2}=6\),\(a_{1}a_{2}=a_{3}\).
              \((1)\)求数列\(\{a_{n}\}\)通项公式;
              \((2)\{b_{n}\}\)为各项非零的等差数列,其前\(n\)项和为\(S_{n}\),已知\(S_{2n+1}=b_{n}b_{n+1}\),求数列\(\{ \dfrac {b_{n}}{a_{n}}\}\)的前\(n\)项和\(T_{n}\).
            • 7.
              已知\(\{a_{n}\}\)为等差数列,前\(n\)项和为\(S_{n}(n∈N^{+})\),\(\{b_{n}\}\)是首项为\(2\)的等比数列,且公比大于\(0\),\(b_{2}+b_{3}=12\),\(b_{3}=a_{4}-2a_{1}\),\(S_{11}=11b_{4}\).
              \((\)Ⅰ\()\)求\(\{a_{n}\}\)和\(\{b_{n}\}\)的通项公式;
              \((\)Ⅱ\()\)求数列\(\{a_{2n}b_{2n-1}\}\)的前\(n\)项和\((n∈N^{+}).\)
            0/40

            进入组卷