优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              已知数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),\(a_{1}= \dfrac {1}{2}\),\(2a_{n+1}=S_{n}+1\).
              \((\)Ⅰ\()\)求\(a_{2}\),\(a_{3}\)的值;
              \((\)Ⅱ\()\)设\(b_{n}=2a_{n}-2n-1\),求数列\(\{b_{n}\}\)的前\(n\)项和\(T_{n}\).
            • 2.
              已知数列\(\{a_{n}\}\)满足\(a_{7}=15\),且点\((a_{n},a_{n+1})(n∈N^{*})\)在函数\(y=x+2\)的图象上.
              \((1)\)求数列\(\{a_{n}\}\)的通项公式;
              \((2)\)设\(b_{n}=3^{a_{n}}\),求数列\(\{b_{n}\}\)的前\(n\)项和\(T_{n}\).
            • 3.
              已知数列\(\{a_{n}\}\)满足\(a_{n+2}-a_{n+1}=a_{n+1}-a_{n}\;(n∈N^{*})\),且\(a_{3}+a_{7}=20\),\(a_{2}+a_{5}=14\).
              \((1)\)求\(\{a_{n}\}\)的通项公式;
              \((2)\)设\(b_{n}= \dfrac {1}{(a_{n}-1)\cdot (a_{n}+1)}\),数列\(\{b_{n}\}\)的前\(n\)项和为\(T_{n}\),求证:\(T_{n} < \dfrac {1}{2}\).
            • 4.
              已知数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}\)满足:\(S_{n}=2(a_{n}-1)\),数列\(\{b_{n}\}\)满足:对任意\(n∈N*\)有\(a_{1}b_{1}+a_{2}b_{2}+…+a_{n}b_{n}=(n-1)⋅2^{n+1}+2\).
              \((1)\)求数列\(\{a_{n}\}\)与数列\(\{b_{n}\}\)的通项公式;
              \((2)\)记\(c_{n}= \dfrac {b_{n}}{a_{n}}\),数列\(\{c_{n}\}\)的前\(n\)项和为\(T_{n}\),证明:当\(n\geqslant 6\)时,\(n|T_{n}-2| < 1\).
            • 5.
              定义\( \dfrac {n}{p_{1}+p_{2}+\cdots +p_{n}}\)为\(n\)个正数\(p_{1}\),\(p_{2}…p_{n}\)的“平均倒数”\(.\)若已知数列\(\{a_{n}\}\)的前\(n\)项的“平均倒数”为\( \dfrac {1}{2n+1}\),又\(b_{n}= \dfrac {a_{n}+1}{4}\),则\( \dfrac {1}{b_{1}b_{2}}+ \dfrac {1}{b_{2}b_{3}}+…+ \dfrac {1}{b_{2017}b_{2018}}\)等于\((\)  \()\)
              A.\( \dfrac {2018}{2019}\)
              B.\( \dfrac {2017}{2018}\)
              C.\( \dfrac {2016}{2017}\)
              D.\( \dfrac {2015}{2016}\)
            • 6.
              等差数列\(\{a_{n}\}\)中,\(a_{2}=5\),\(a_{1}+a_{4}=12\),等比数列\(\{b_{n}\}\)的各项均为正数,且满足\(b_{n}b_{n+1}=2\;^{a_{n}}\)
              \((\)Ⅰ\()\)求数列\(\{a_{n}\}\)的通项公式及数列\(\{b_{n}\}\)的公比\(q\)
              \((\)Ⅱ\()\)求数列\(\{a_{n}+b_{n}\}\)的前\(n\)项和\(S_{n}\).
            • 7.
              设数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}\),若\( \dfrac {a_{1}^{2}}{1^{2}}+ \dfrac {a_{2}^{2}}{2^{2}}+ \dfrac {a_{3}^{2}}{3^{2}}+…+ \dfrac {a_{n}^{2}}{n^{2}}=4n-4\),且\(a_{n}\geqslant 0\),则\(S_{100}\)等于\((\)  \()\)
              A.\(5048\)
              B.\(5050\)
              C.\(10098\)
              D.\(10100\)
            • 8.
              已知数列\(\{\{a_{n}\}\)满足\(a_{1}=1,a_{n+1}= \dfrac {a_{n}}{a_{n}+2}\),\(b_{n+1}=(n-λ)( \dfrac {1}{a_{n}}+1)(n∈N^{*}),b_{1}=-λ\).
              \((1)\)求证:数列\(\{ \dfrac {1}{a_{n}}+1\}\)是等比数列;
              \((2)\)若数列\(\{b_{n}\}\)是单调递增数列,求实数\(λ\)的取值范围.
            • 9.
              已知数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}=3^{n}+1\).
              \((1)\)求数列\(\{a_{n}\}\)的通项公式;
              \((2)\)令\(b_{n}= \dfrac {n}{a_{n}}\),求数列\(\{b_{n}\}\)的前\(n\)项和\(T_{n}\).
            • 10.
              若数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}\)满足\(3S_{n}=1-a_{n}\),\(n∈N^{*}\).
              \((1)\)求数列\(\{a_{n}\}\)的通项公式;
              \((2)\)设\(b_{n}= \dfrac {1}{\log _{2}a_{n}\cdot \log _{2}a_{n+1}}(n∈N^{*})\),求数列\(\{b_{n}\}\)的前\(n\)项和\(T_{n}\).
            0/40

            进入组卷