优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.

              已知函数\(f(x)=x^{2}+2bx\)的图象在点\(A(0,f(0))\)处的切线\(l\)与直线\(x+y+3=0\)垂直,若数列\(\{\dfrac{1}{f\left(n\right)} \}\)的前\(n\)项和为\(S_{n}\),则\(S_{2011}\)的值为\((\)  \()\)

              A.\(\dfrac{2012}{2011} \)
              B.\(\dfrac{2010}{2011} \)
              C.\(\dfrac{2013}{2012} \)
              D.\(\dfrac{2011}{2012} \)
            • 2. 在数列\(\{a\)\({\,\!}_{n}\)\(\}\)中,\(a\)\({\,\!}_{1}\)\(=2\),\(a\)\({\,\!}_{17}\)\(=66\),通项公式是关于\(n\)的一次函数.
              \((1)\)求数列\(\{a\)\({\,\!}_{n}\)\(\}\)的通项公式;
              \((2)\)求\(a\)\({\,\!}_{2015}\)
              \((3)2 016\)是否为数列\(\{a\)\({\,\!}_{n}\)\(\}\)中的项?
            • 3.

              \((\)选作\()\)设数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),\(a_{1}=1\),满足\( \overrightarrow{a}=(S_{n+1}-2S_{n},S_{n})\),\( \overrightarrow{b}=(2,n)\),\( \overrightarrow{a}/\!/ \overrightarrow{b}\).
              \((1)\)求证:数列\(\{ \dfrac {S_{n}}{n}\}\)为等比数列;
              \((2)\)求数列\(\{S_{n}\}\)的前\(n\)项和\(T_{n}\).

            • 4. 已知无穷数列\(\{a_{n}\}\)的各项均为正整数,\(S_{n}\)为数列\(\{a_{n}\}\)的前\(n\)项和.
              \((\)Ⅰ\()\)若数列\(\{a_{n}\}\)是等差数列,且对任意正整数\(n\)都有\(S_{n^{2}}=(S_{n})^{2}\)成立,求数列\(\{a_{n}\}\)的通项公式;
              \((\)Ⅱ\()\)对任意正整数\(n\),从集合\(\{a_{1},a_{2},…,a_{n}\}\)中不重复地任取若干个数,这些数之间经过加减运算后所得数的绝对值为互不相同的正整数,且这些正整数与\(a_{1}\),\(a_{2}\),\(…\),\(a_{n}\)一起恰好是\(1\)至\(S_{n}\)全体正整数组成的集合.
              \((ⅰ)\)求\(a_{1}\),\(a_{2}\)的值;
              \((ⅱ)\)求数列\(\{a_{n}\}\)的通项公式.
            • 5.
              已知函数 \(f\)\(( \)\(x\)\()=\) \(x\)\({\,\!}^{2}-2( \)\(n\)\(+1)\) \(x\)\(+\) \(n\)\({\,\!}^{2}+5\) \(n\)\(-7( \)\(n\)\(∈N^{*}).\)

              \((1)\)设函数\(y\)\(=\)\(f\)\((\)\(x\)\()\)的图象的顶点的纵坐标构成数列\(\{\)\(a_{n}\)\(\}\),求证:\(\{\)\(a_{n}\)\(\}\)为等差数列;

              \((2)\)设函数\(y\)\(=\)\(f\)\((\)\(x\)\()\)的图象的顶点到\(x\)轴的距离构成数列\(\{\)\(b_{n}\)\(\}\),求\(\{\)\(b_{n}\)\(\}\)的前\(n\)项和\(S_{n}\)

            • 6. 已知数列\(\{a_{n}\}\)是公差不为零的等差数列,\(a_{10}=15\),且\(a_{3}\)、\(a_{4}\)、\(a_{7}\)成等比数列.
              \((\)Ⅰ\()\)求数列\(\{a_{n}\}\)的通项公式;
              \((\)Ⅱ\()\)设\(b_{n}= \dfrac {a_{n}}{2^{n}}\),数列\(\{b_{n}\}\)的前\(n\)项和为\(T_{n}\),求证:\(- \dfrac {7}{4}\leqslant T_{n} < -1(n∈N^{*})\).
            • 7. 已知数列\(\{a_{n}\}\)是公差不为\(0\)的等差数列,\(a_{3}=6\),且\(a_{1}\),\(a_{2}\),\(a_{4}\)成等比数列,数列\(\{b_{n}\}\)满足\(b_{n+1}=2b_{n}+1\),\(n∈N^{*}\),且\(b_{1}=3\)
              \((1)\)求数列\(\{a_{n}\}\)和\(\{b_{n}\}\)的通项公式
              \((2)\)设数列\(\{c_{n}\}\)的前\(n\)项和为\(S_{n}\),且\(c_{n}= \dfrac {1}{a_{n}\cdot \log _{2}(b_{n}+1)}\),证明:\(S_{n} < \dfrac {1}{2}\).
            • 8.

              已知\(\{a_{n}\}\)是等差数列,\(S_{n}\)为其前\(n\)项和,若\(S_{29}=S_{4000}\),\(O\)为坐标原点,点\(P(1,a_{n})\),点\(Q(2015,a_{2015})\),则\(\overrightarrow{OP}·\overrightarrow{OQ}=\)(    )

              A.\(2015\)                                                 
              B.\(-2015\)
              C.\(0\)                                                       
              D.\(1\)
            • 9. 将\((1+ \dfrac {1}{3}x)^{n}\)展开式的各项依次记为\(a_{1}(x)\),\(a_{2}(x)\),\(a_{3}(x)\),\(…\),\(a_{n}(x)\),\(a_{n+1}(x)\),设\(F(x)=a_{1}(x)+2a_{2}(x)+3a_{3}(x)+…+na_{n}(x)+(n+1)a_{n+1}(x)\).
              \((1)\)是否存在\(n∈N^{*}\),使得\(a_{1}(x)\),\(a_{2}(x)\),\(a_{3}(x)\)的系数成等比数列?若存在,求出\(n\)的值;若不存在,请说明理由.
              \((2)\)求证:对任意\(x_{1}\),\(x_{2}∈[0,3]\),恒有\(|F(x_{1})-F(x_{2})| < 2^{n-1}(n+2)\).
            • 10. 已知数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}=a_{n}+n^{2}-1\),数列\(\{b_{n}\}\)满足\(3^{n}⋅b_{n+1}=(n+1)a_{n+1}-na_{n}\),且\(b_{1}=3\).
              \((\)Ⅰ\()\)求\(a_{n}\),\(b_{n}\);
              \((\)Ⅱ\()\)设\(T_{n}\)为数列\(\{b_{n}\}\)的前\(n\)项和,求\(T_{n}\),并求满足\(T_{n} < 7\)时\(n\)的最大值.
            0/40

            进入组卷