优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1. 已知正项等比数列满足:,若存在两项使得,则的最小值为(    )
              A.\(9\)
              B.
              C.
              D.
            • 2.

              已知数列\(\{an\}\)的首项\({a}_{1}= \dfrac{3}{5},{a}_{n+1}= \dfrac{3{a}_{n}}{2{a}_{n}+1},n∈{N}^{*} \).

              \((1)\)求证:数列\(\{ \dfrac{1}{{a}_{n}}-1\} \)为等比数列;

              \((2)\)记\({S}_{n}= \dfrac{1}{{a}_{1}}+ \dfrac{1}{{a}_{2}}+...+ \dfrac{1}{{a}_{n}} \),若\(S_{n} < 101\),求最大正整数\(n\)的值;

                  \((3)\)是否存在互不相等的正整数\(m\),\(s\),\(n\),使\(m\),\(s\),\(n\)成等差数列,且\(a_{m}-1\),\(a_{s}-1\),\(a_{n}-1\)成等比数列?如果存在,请给予证明;如果不存在,请说明理由.

            • 3. 设数列\(\{a_{n}\}\)满足\(a_{1}=0\)且\(\dfrac{1}{1-{{a}_{n+1}}}-\dfrac{1}{1-{{a}_{n}}}=1\).

              \((1)\)求\(\{a_{n}\}\)的通项公式;

              \((2)\)设\({{b}_{n}}=\dfrac{1-\sqrt{{{a}_{n+1}}}}{\sqrt{n}}\),记\({{S}_{n}}=\sum\limits_{k=1}^{n}{{{b}_{k}}}\),证明:\(S_{n} < 1\).

            • 4.

              已知数列\(\{a_{n}\}\)中,\(a_{1}=1\),\(a_{n+1}=1+ \dfrac {2}{a_{n}}\),记\(b_{n}= \dfrac {a_{n}-2}{a_{n}+1}\)
              \((1)\)求证:数列\(\{b_{n}\}\)是等比数列,并求\(b_{n}\);
              \((2)\)求数列\(\{a_{n}\}\)的通项公式\(a_{n}\);
              \((3)\)记\(c_{n}=nb_{n}\),\(S_{n}=c_{1}+c_{2}+…+c_{n}\),对任意正整数\(n\),不等式\( \dfrac {m}{32}+ \dfrac {3}{2}S_{n}+n(- \dfrac {1}{2})^{n+1}- \dfrac {1}{3}(- \dfrac {1}{2})^{n} > 0\)恒成立,求最小正整数\(m\).

            • 5. 已知\(f(x)=- \sqrt {4+ \dfrac {1}{x^{2}}}\),数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),点\(P_{n}(a_{n},- \dfrac {1}{a_{n+1}})\)在曲线\(y=f(x)\)上\((n∈N^{*})\),且\(a_{1}=1\),\(a_{n} > 0\).
              \((1)\)求数列\(\{a_{n}\}\) 的通项公式;
              \((2)\)数列\(\{b_{n}\}\)的前\(n\)项和为\(T_{n}\),且满足\( \dfrac {T_{n+1}}{a_{n}^{2}}= \dfrac {T_{n}}{a_{n+1}^{2}}+16n^{2}-8n-3\),\(b_{1}=1\),求数列\(\{b_{n}\}\)的通项公式;
              \((3)\)求证:\(S_{n} > \dfrac {1}{2} \sqrt {4n+1}-1\),\(n∈N^{*}\).
            • 6. 设数列\(\{a_{n}\}\),其前\(n\)项和\(S_{n}=-3n^{2}\),\(\{b_{n}\}\)为单调递增的等比数列,\(b_{1}b_{2}b_{3}=512\),\(a_{1}+b_{1}=a_{3}+b_{3}\).
              \((1)\)求数列\(\{a_{n}\}\),\(\{b_{n}\}\)的通项;
              \((2)\)若\(c_{n}= \dfrac {b_{n}}{(b_{n}-2)(b_{n}-1)}\),数列\(\{c_{n}\}\)的前\(n\)项和\(T_{n}\),求证:\( \dfrac {2}{3}\leqslant T_{n} < 1\).
            • 7. 已知数列\(\{a_{n}\}\)满足:\(a_{1}=1\),\(3a \;_{ n+1 }^{ 2 }+3a \;_{ n }^{ 2 }-10a_{n}a_{n+1}=3\),\(a_{n} < a_{n+1}(n∈N^{+}).\)
              \((\)Ⅰ\()\)证明:\(\{3a_{n+1}-a_{n}\}\)是等比数列;
              \((\)Ⅱ\()\)设数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),求证:\( \dfrac {n^{2}}{S_{n}}\leqslant \dfrac {1}{a_{1}}+ \dfrac {1}{a_{2}}+…+ \dfrac {1}{a_{n}} < \dfrac {3}{2}\).
            • 8.
              在数列\(\{a_{n}\}\),\(\{b_{n}\}\)中,\(a_{1}=2\),\(b_{1}=4\),且\(a_{n}\),\(b_{n}\),\(a_{n+1}\)成等差数列,\(b_{n}\),\(a_{n+1}\),\(b_{n+1}\)成等比数列\((n∈N^{*}).\)
              \((\)Ⅰ\()\)求\(a_{2}\),\(a_{3}\),\(a_{4}\)和\(b_{2}\),\(b_{3}\),\(b_{4}\),由此猜测\(\{a_{n}\}\),\(\{b_{n}\}\)的通项公式;
              \((\)Ⅱ\()\)证明你的结论;
              \((\)Ⅲ\()\)证明:\( \dfrac {1}{a_{1}+b_{1}}+ \dfrac {1}{a_{2}+b_{2}}+…+ \dfrac {1}{a_{n}+b_{n}} < \dfrac {5}{12}\).
            • 9.
              已知各项均为正实数的数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),\(4S_{n}=a_{n}^{2}+2a_{n}-3\)对于一切\(n∈N^{*}\)成立.
              \((\)Ⅰ\()\)求\(a_{1}\);
              \((\)Ⅱ\()\)求数列\(\{a_{n}\}\)的通项公式;
              \((\)Ⅲ\()\)设\(b_{n}= \sqrt {2^{a_{n}-1}},T_{n}\)为数列\(\{ \dfrac {a_{n}}{b_{n}}\}\)的前\(n\)项和,求证\(T_{n} < 5\).
            • 10.
              已知\(f(x)=\ln x,g(x)= \dfrac {1}{2}ax^{2}+3x+1\),\(e\)为自然对数\(\ln x\)的底数.
              \((\)Ⅰ\()\)若函数\(h(x)=f(x)-g(x)\)存在单调递减区间,求实数\(a\)的取值范围;
              \((\)Ⅱ\()\)当\(0 < α < β\)时,求证:\(\alpha f(\alpha )+\beta f(\beta ) > (\alpha +\beta )f( \dfrac {\alpha +\beta }{2})\);
              \((\)Ⅲ\()\)求\(f(x)-x\)的最大值,并证明当\(n > 2\),\(n∈N^{*}\)时,\(\log _{2}e+\log _{3}e+\log _{4}e\cdots +\log _{n}e > \dfrac {3n^{2}-n-2}{2n(n+1)}\).
            0/40

            进入组卷