优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.

              设\(\{{{a}_{n}}\}\)是首项为\({{a}_{1}}\),公差为\(d\)的等差数列,\(\{{{b}_{n}}\}\)是首项为\({{b}_{1}}\),公比为\(q\)的等比数列.

              \((1)\)设\({{a}_{1}}=0,{{b}_{1}}=1,q=2\),若\(|{{a}_{n}}-{{b}_{n}}|\leqslant {{b}_{1}}\)对\(n=1,2,3,4\)均成立,求\(d\)的取值范围;

              \((2)\)若\({{a}_{1}}={{b}_{1}} > 0,m\in {{N}^{*}},q\in (1,\sqrt[m]{2}]\),证明:存在\(d\in R\),使得\(|{{a}_{n}}-{{b}_{n}}|\leqslant {{b}_{1}}\)对\(n=2,3,\cdots ,m+1\)均成立,并求\(d\)的取值范围\((\)用\({{b}_{1}},m,q\)表示\()\).

            • 2. 已知数列\(\{a_{n}\}\)的通项公式为\(a_{n}=2^{5-n}\),数列\(\{b_{n}\}\)的通项公式为\(b_{n}=n+k\),设\(c_{n}= \begin{cases} \overset{b_{n},a_{n}\leqslant b_{n}}{a_{n},a_{n} > b_{n}}\end{cases}\)若在数列\(\{c_{n}\}\)中,\(c_{5}\leqslant c_{n}\)对任意\(n∈N^{*}\)恒成立,则实数\(k\)的取值范围是______.
            • 3.
              已知函数\(f(x)\),给出如下定义:若\(f_{1}(x)\),\(f_{2}(x)\),\(…\),\(f_{n}(x)\),\(…\)均为定义在同一个数集下的函数,且\(f_{1}(x)=f(x)\),\(f_{n}(x)=f(f_{n-1}(x))\),其中\(n=2\),\(3\),\(4\),\(…\),则称\(f_{1}(x)\),\(f_{2}(x)\),\(…\),\(f_{n}(x)\),\(…\)为一个嵌套函数列,记为\(\{f_{n}(x)\}\),若存在非零实数\(λ\),使得嵌套函数列\(\{f_{n}(x)\}\)满足\(f_{n-1}(x)=λf_{n}(x)\),则称\(\{f_{n}(x)\}\)为类等比函数列.
              \((\)Ⅰ\()\)已知\(\{f_{n}(x)\}\)是定义在\(R\)上的嵌套函数列,若\(f(x)= \dfrac {x}{2}+ \dfrac {1}{4}\).
              \(①\)求\(f(2)\),\(f_{2}(2)\),\(f_{3}(2)\).
              \(②\)证\(\{f_{n}(x)- \dfrac {1}{2}\}\)是类等比函数列.
              \((\)Ⅱ\()\)已知\(\{g_{n}(x)\}\)是定义在\((1,+∞)\)上嵌套函数列.
              若\(g(x)= \dfrac {1}{2}(x+ \dfrac {1}{x})\),求证\(|g_{n+1}(x)-g_{n}(x)| < \dfrac {1}{2^{n}}|x- \dfrac {1}{x}|.\)
            • 4.
              在数列\(\{a_{n}\}\)中,\(a_{1}+2a_{2}++2^{2}a_{3}+…2^{n-1}a_{n}=(n⋅2^{n}-2^{n}+1)t\)对任意\(n∈N^{*}\)成立,其中常数\(t > 0.\)若关于\(n\)的不等式\( \dfrac {1}{a_{2}}+ \dfrac {1}{a_{4}}+ \dfrac {1}{a_{8}}+…+ \dfrac {1}{a_{2^{n}}} > \dfrac {m}{a_{1}}\)的解集为\(\{n|n\geqslant 4,n∈N^{*}\}\),则实数\(m\)的取值范围是 ______ .
            • 5.
              设数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),已知\( \dfrac {S_{n}}{2}=a_{n}-2^{n}(n∈N^{*}).\)
              \((1)\)求\(a_{1}\)的值,若\(a_{n}=2^{n}c_{n}\),证明数列\(\{c_{n}\}\)是等差数列;
              \((2)\)设\(b_{n}=\log _{2}a_{n}-\log _{2}(n+1)\),数列\(\{ \dfrac {1}{b_{n}}\}\)的前\(n\)项和为\(B_{n}\),若存在整数\(m\),使对任意\(n∈N^{*}\)且\(n\geqslant 2\),都有\(B_{3n}-B_{n} > \dfrac {m}{20}\)成立,求\(m\)的最大值.
            • 6.
              已知函数\(f(x)=\sin (2x- \dfrac {π}{6})+2\cos ^{2}x-1(x∈R)\).
              \((1)\)求\(f(x)\)的单调递增区间;
              \((2)\)在\(\triangle ABC\)中,三内角\(A\),\(B\),\(C\)的对边分别为\(a\),\(b\),\(c\),已知\(f(A)= \dfrac {1}{2}\),\(b\),\(a\),\(c\)成等差数列,且\( \overrightarrow{AB}⋅ \overrightarrow{AC}=9\),求\(a\)的值.
            • 7.
              已知数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}\)满足:\(S_{n}=t(S_{n}-a_{n}+1)(t\)为常数,且\(t\neq 0\),\(t\neq 1)\).
              \((1)\)求\(\{a_{n}\}\)的通项公式;
              \((2)\)设\(b_{n}=a_{n}^{2}+S_{n}a_{n}\),若数列\(\{b_{n}\}\)为等比数列,求\(t\)的值;
              \((3)\)在满足条件\((2)\)的情形下,设\(c_{n}=4a_{n}+1\),数列\(\{c_{n}\}\)的前\(n\)项和为\(T_{n}\),若不等式\( \dfrac {12k}{4+n-T_{n}}\geqslant 2n-7\)对任意的\(n∈N^{*}\)恒成立,求实数\(k\)的取值范围.
            • 8. 已知\(f(x)= \dfrac {x}{1+x}(x\geqslant 0)\),数列\(\{a_{n}\}\)满足\(a_{1}=f(1)\),且\(a_{n+1}=f(a_{n})(n∈N_{+})\),则\(a_{2015}=\)______.
            • 9. 已知数列\(\{a_{n}\}\)是首项为\(a_{1}= \dfrac {1}{4}\),公比\(q= \dfrac {1}{4}\)的等比数列,设\(b_{n}+2=3\log \;_{ \frac {1}{4}}a_{n}(n∈N^{*})\),数列\(\{c_{n}\}\)满足\(c_{n}=a_{n}⋅b_{n}.(\)Ⅰ\()\)求数列\(\{c_{n}\}\)的前\(n\)项和\(S_{n}\);
              \((\)Ⅱ\()\)若\(c_{n}\leqslant \dfrac {1}{4}m^{2}+m-1\)对一切正整数\(n\)恒成立,求实数\(m\)的取值范围.
            • 10. 已知函数\(f(x)=\log _{2}x\),\(g(x)=x^{2}+2x\),数列\(\{a_{n}\}\)的前\(n\)项和记为\(S_{n}\),\(b_{n}\)为数列\(\{b_{n}\}\)的通项,\(n∈N^{*}.\)点\((b_{n},n)\)和\((n,S_{n})\)分别在函数\(f(x)\)和\(g(x)\)的图象上.
              \((1)\)求数列\(\{a_{n}\}\)和\(\{b_{n}\}\)的通项公式;
              \((2)\)令\(C_{n}= \dfrac {1}{a_{n}\cdot f(b_{2n-1})}\),求数列\(\{C_{n}\}\)的前\(n\)项和\(T_{n}\).
            0/40

            进入组卷