优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              已知数列\(\{a_{n}\}\)满足\(a_{n}= \dfrac {n}{t+1}(n,t∈N*,t\geqslant 3,n\leqslant t)\).
              证明:
              \((I)a_{n} < e\;^{a_{n}-1}(e\)为自然对数底数\()\);
              \((\)Ⅱ\() \dfrac {1}{a_{1}}+ \dfrac {1}{a_{2}}+…+ \dfrac {1}{a_{n}} > (t+1)\ln (n+1)\);
              \((\)Ⅲ\()(a_{1})^{t}+(a_{2})^{t}+(a_{3})^{t}+…+(a_{n})^{t} < 1\).
            • 2.
              若\(a\),\(b\),\(c\)成等比数列,则函数\(y=ax^{2}+bx+c\)的图象与\(x\)轴的交点个数为\((\)  \()\)
              A.\(0\)
              B.\(1\)
              C.\(2\)
              D.\(0\)或\(1\)
            • 3.
              已知函数\(f(x)=a^{x}\)的图象过点\((1, \dfrac {1}{2})\),且点\((n-1, \dfrac {a_{n}}{n^{2}})(n∈N^{*})\)在函数\(f(x)=a^{x}\)的图象上.
              \((1)\)求数列\(\{a_{n}\}\)的通项公式;
              \((2)\)令\(b_{n}=a_{n+1}- \dfrac {1}{2}a_{n}\),若数列\(\{b_{n}\}\)的前\(n\)项和为\(S_{n}\),求证:\(S_{n} < 5\).
            • 4.
              已知函数\(f(x)=\log _{2}(x+t)\),且\(f(0)\),\(f(1)\),\(f(3)\)成等差数列,点\(P\)是函数\(y=f(x)\)图象上任意一点,点\(P\)关于原点的对称点\(Q\)的轨迹是函数\(y=g(x)\)的图象.
              \((1)\)解关于\(x\)的不等式\(2f(x)+g(x)\geqslant 0\);
              \((2)\)当\(x∈[0,1)\)时,总有\(2f(x)+g(x)\geqslant m\)恒成立,求\(m\)的取值范围.
            • 5.
              已知点\((1, \dfrac {1}{3})\)是函数\(f(x)=a^{x}(a > 0\),且\(a\neq 1)\)的图象上一点,等比数列\(\{a_{n}\}\)的前\(n\)项和为\(f(n)-c\),数列\(\{b_{n}\}(b_{n} > 0)\)的首项和\(S_{n}\)满足\(S_{n}-S_{n-1}= \sqrt {S_{n}}+ \sqrt {S_{n+1}}(n\geqslant 2)\).
              \((1)\)求数列\(\{a_{n}\}\)和\(\{b_{n}\}\)的通项公式;
              \((2)\)若数列\(\{ \dfrac {1}{b_{n}b_{n+1}}\}\)的前\(n\)项和为\(T_{n}\),问\(T_{n} > \dfrac {1000}{2009}\)的最小正整数\(n\)是多少?
            • 6.
              已知数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\)满足:\(S_{n}= \dfrac {a}{a-1}(a_{n}-1)(a\)为常数,且\(a\neq 0\),\(a\neq 1)\)
              \((1)\)若\(a=2\),求数列\(\{a_{n}\}\)的通项公式
              \((2)\)设\(b_{n}= \dfrac {2S_{n}}{a_{n}}+1\),若数列\(\{b_{n}\}\)为等比数列,求\(a\)的值.
              \((3)\)在满足条件\((2)\)的情形下,设\(c_{n}= \dfrac {1}{1+a_{n}}+ \dfrac {1}{1-a_{n+1}}\),数列\(\{c_{n}\}\)前\(n\)项和为\(T_{n}\),求证\(T_{n} > 2n- \dfrac {1}{3}\).
            • 7.
              设\(\triangle ABC\)的三内角\(A\)、\(B\)、\(C\)成等差数列,\(\sin A\)、\(\sin B\)、\(\sin C\)成等比数列,则这个三角形的形状是\((\)  \()\)
              A.直角三角形
              B.钝角三角形
              C.等腰直角三角形
              D.等边三角形
            • 8.
              已知数列\(\{a_{n}\}\)中\(a_{1}=2\),\(a_{n+1}=2- \dfrac {1}{a_{n}}\),数列\(\{b_{n}\}\)中\(b_{n}= \dfrac {1}{a_{n}-1}\),其中 \(n∈N^{*}\).
              \((\)Ⅰ\()\)求证:数列\(\{b_{n}\}\)是等差数列;
              \((\)Ⅱ\()\)设\(S_{n}\)是数列\(\{ \dfrac {1}{3}b_{n}\}\)的前\(n\)项和,求\( \dfrac {1}{S_{1}}+ \dfrac {1}{S_{2}}+…+ \dfrac {1}{S_{n}}\);
              \((\)Ⅲ\()\)设\(T_{n}\)是数列\(\{\;( \dfrac {1}{3})^{n}\cdot b_{n}\;\}\)的前\(n\)项和,求证:\(T_{n} < \dfrac {3}{4}\).
            • 9.
              已知数列\(\{a_{n}\}\)的满足\(a_{1}=1\),前\(n\)项的和为\(S_{n}\),且\( \dfrac {a_{n+1}-a_{n}}{a_{n}a_{n+1}}= \dfrac {2}{4S_{n}-1}(n∈N^{*}).\)
              \((1)\)求\(a_{2}\)的值;
              \((2)\)设\(b_{n}= \dfrac {a_{n}}{a_{n+1}-a_{n}}\),证明:数列\(\{b_{n}\}\)是等差数列;
              \((3)\)设\(c_{n}=2^{b_{n}}\cdot a_{n}\),若\(1\leqslant λ\leqslant \sqrt {2}\),求对所有的正整数\(n\)都有\(2λ^{2}-kλ+3 \sqrt {2} < c_{n}\)成立的\(k\)的取值范围.
            • 10. (2016•全国)定义“规范01数列”{an}如下:{an}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1 , a2 , …,ak中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有(  )
              A.18个
              B.16个
              C.14个
              D.12个
            0/40

            进入组卷