优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.

              如图,矩形\(ABCD\)所在平面与三角形\(ABE\)所在平面互相垂直,\(AE=AB\),\(M\),\(N\),\(H\)分别为\(DE\),\(AB\),\(BE\)的中点.


              \((1)\)求证:\(MN/\!/\)平面\(BEC\);

              \((2)\)求证:\(AH⊥CE\).

            • 2. 如图,已知四棱锥\(P-ABCD\),底面\(ABCD\)为菱形,\(PA⊥\)平面\(ABCD\),\(∠ABC=60^{\circ}\),\(E\),\(F\)分别是\(BC\),\(PC\)的中点.
              \((\)Ⅰ\()\)证明:\(AE⊥PD\);
              \((\)Ⅱ\()\)若\(H\)为\(PD\)上的动点,\(EH\)与平面\(PAD\)所成最大角的正切值为\( \dfrac { \sqrt {6}}{2}\),求二面角\(E-AF-C\)的余弦值.
            • 3.

              底面为菱形的直棱柱\(ABCD-{{A}_{1}}{{B}_{1}}{{C}_{1}}{{D}_{1}}\)中,\(E\),\(F\)分别为棱\({A}_{1}{B}_{1},{A}_{1}{D}_{1} \)的中点.



              \((\)Ⅰ\()\)在图中作一个平面\(\alpha \),使得\(BD\subset \alpha \),且平面\(AEF/\!/\alpha .(\)不必给出证明过程,只要求作出\(\alpha \)与直棱柱\(ABCD-{{A}_{1}}{{B}_{1}}{{C}_{1}}{{D}_{1}}\)的截面\()\).

              \((\)Ⅱ\()\)若\(AB=A{{A}_{1}}=2,\angle BAD={{60}^{0}}\),求点\(C\)到所作截面\(\alpha \)的距离.

            • 4. 填空题
              \((1)\)已知等差数列\(\{ \)\(a_{n}\)\(\}\)前\(9\)项的和为\(27\), \(a\)\({\,\!}_{10}=8\),则 \(a\)\({\,\!}_{200}\)等于________.
              \((2)\)过两直线\(x- \sqrt{3}y+1=0\)和\( \sqrt{3}x+y- \sqrt{3}=0\)的交点,并且与原点的最短距离为\( \dfrac{1}{2}\)的直线的方程为________.
              \((3)\)设 \(m\) \(n\)是不同的直线,\(α\),\(β\),\(γ\)是不同的平面,有以下四个命题:

                 \((1)\left. \begin{matrix} \alpha /\!/\beta \\ \alpha /\!/\gamma \\\end{matrix} \right\}\Rightarrow \beta /\!/\gamma \);\((2)\left. \begin{matrix} \alpha \bot \beta \\ m/\!/\alpha \\\end{matrix} \right\}\Rightarrow m/\!/\beta \)

                 \((3)\left. \begin{matrix} m\bot \alpha \\ m/\!/\beta \\\end{matrix} \right\}\Rightarrow \alpha \bot \beta \);\((4)\left. \begin{matrix} m/\!/n \\ n\subset \alpha \\\end{matrix} \right\}\Rightarrow m/\!/\alpha \),

              其中假命题有                    

              \((4)\)已知定义在\(R\)上的单调函数\(f(x)\)满足对任意的\(x_{1}\),\(x_{2}\),都有\(f(x_{1}+x_{2})=f(x_{1})+f(x_{2})\)成立\(.\)若正实数\(a\),\(b\)满足\(f(a)+f(4b-1)=0\),则\( \dfrac{1}{a}+ \dfrac{2}{b} \)的最小值为                

            • 5.

              已知长方体\(ABCD-A_{1}B_{1}C_{1}D_{1}\)中,\(AD=AB=2\),\(AA_{1}=1\),\(E\)为\(C_{1}D_{1}\)的中点.

              \((1)\)在所给图中画出平面\(ABD_{1}\)与平面\(B_{1}CE\)的交线\((\)不必说明理由\()\)

              \((2)\)证明:\(BD_{1}/\!/\)平面\(B_{1}CE\);

            • 6.

              如图\((1)\),在直角梯形\(ABCD\)中,\(O\)为\(BD\)的中点,\(AD\)\(/\!/\)\(BC\),把沿翻折如图\((2)\),使得平面

              \((1)\)求证:

              \((2)\)在线段上是否存在点\(N\),使得与平面所成角为\({{30}^{\circ }}\)?若存在,求出\( \dfrac{BN}{BC} \)的值;若不存在,说明理由.

            • 7.
              如图,在底面是正方形的四棱锥\(P-ABCD\)中,\(PA⊥\)面\(ABCD\),\(BD\)交\(AC\)于点\(E\),\(F\)是\(PC\)中点,\(G\)为\(AC\)上一点.
              \((\)Ⅰ\()\)求证:\(BD⊥FG\);
              \((\)Ⅱ\()\)确定点\(G\)在线段\(AC\)上的位置,使\(FG/\!/\)平面\(PBD\),并说明理由;
              \((\)Ⅲ\()\)当二面角\(B-PC-D\)的大小为\( \dfrac {2π}{3}\)时,求\(PC\)与底面\(ABCD\)所成角的正切值.
            • 8.
              如图,已知棱长为\(4\)的正方体\(ABCD-A_{1}B_{1}C_{1}D_{1}\)中,\(M\),\(N\),\(E\),\(F\)分别是棱\(A_{1}D_{1}\),\(A_{1}B_{1}\),\(D_{1}C_{1}\),\(B_{1}C_{1}\)的中点,求证:平面\(AMN/\!/\)平面\(EFBD\).
            • 9.
              如图,在直四棱柱\(ABCD-A_{1}B_{1}C_{1}D_{1}\)中,\(∠BAD=60^{\circ}\),\(AB=BD\),\(BC=CD\).
              \((1)\)求证:平面\(ACC_{1}A_{1}⊥\)平面\(A_{1}BD\);
              \((2)AB=AA_{1}=2\),求三棱锥\(B_{1}-A_{1}BD\)的体积.
            • 10.
              已知三棱锥\(P-ABC\)中,\(PA⊥ABC\),\(AB⊥AC\),\(PA=AC= \dfrac {1}{2}AB\),\(N\)为\(AB\)上一点,\(AB=4AN\),\(M\),\(S\)分别为\(PB\),\(BC\)的中点.
              \((\)Ⅰ\()\)证明:\(CM⊥SN\);
              \((\)Ⅱ\()\)求\(SN\)与平面\(CMN\)所成角的大小.
            0/40

            进入组卷