优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.

              在空间中,下列命题正确的是(    )

              A.若直线\(a/\!/\)平面\(\alpha \),直线\(b/\!/a\),则\(b/\!/\alpha \);  
              B.若\(a/\!/\)平面\(\alpha \),\(b/\!/\)平面\(\alpha \),\(a\subset \beta ,b\subset \beta \),则\(\alpha /\!/\beta \)
              C.若\(a\subset \alpha ,b\subset \beta \),\(a/\!/\beta ,b/\!/\alpha \),则\(\alpha /\!/\beta \);
              D.若\(\alpha /\!/\beta \),\(a\subset \alpha \),则\(a/\!/\)平面\(\beta \).
            • 2.

              若\(m\),\(n\)是两条不同的直线,\(α\),\(β\),\(γ\)是三个不同的平面,下些说法正确的是 (    )

              A.若\(m\subset β\),\(α⊥β\),则\(m⊥α\)             
              B.若\(m⊥β\),\(m/\!/α\),则\(α⊥β\)
              C.若\(α∩γ=m\),\(β∩γ=n\),\(m/\!/n\),则\(α/\!/β\)
              D.若\(α⊥γ\),\(α⊥β\),则\(γ⊥β\)
            • 3.

              已知\(m{,}n\)是直线,\(\alpha{,}\beta{,}\gamma\)是平面,给出下列命题:\({①}\)若\(\alpha{⊥}\beta{,}\alpha{∩}\beta{=}m{,}n{⊥}m\),则\(n{⊥}\alpha\)或\(n{⊥}\beta\).\({②}\)若\(\alpha{/\!/}\beta{,}\alpha{∩}\gamma{=}m{,}\beta{∩}\gamma{=}n\),则\(m{/\!/}n\).\({③}\)若\(m{⊂}\alpha{,}n{⊂}\alpha{,}m{/\!/}\beta{,}n{/\!/}\beta\),则\(\alpha{/\!/}\beta{④}\)若\(\alpha{∩}\beta{=}m{,}n{/\!/}m\)且\(n{⊄}\alpha{,}n{⊄}\beta\),则\(n{/\!/}\alpha\)且\(n{/\!/}\beta\)其中正确的命题是\(({  })\)

              A.\({①②}\)
              B.\({②④}\)
              C.\({②③}\)
              D.\({③④}\)
            • 4.

              如图,在直四棱柱\(ABCD-{{A}_{1}}{{B}_{1}}{{C}_{1}}{{D}_{1}}\)中,底面\(ABCD\)为等腰梯形,\(AB/\!/CD\),\(AB=4\),\(BC=CD=2\),\(A{{A}_{1}}=2\),\(E,{E}_{1},F \)分别是棱\(AD,A{A}_{1},AB \)的中点\(.\)证明:直线\(E{{E}_{1}}/\!/\)平面\(FC{{C}_{1}}\).

               

            • 5.

              已知\(\alpha \),\(\beta \)为不同的平面,\(a\),\(b\),\(c\)为不同的直线,则下列命题中正确的是\((\)   \()\)

              A.若\(a\subset \alpha \),\(b/\!/a\),则\(b/\!/\alpha \)

              B.若\(\alpha \bot \beta \),\(\alpha \cap \beta =c\),\(b\bot c\),则\(b\bot \beta \)

              C.若\(a\bot b\),\(b\bot c\),则\(a/\!/c\)

              D.若\(a\cap b=A\),\(a\subset \alpha \),\(b\subset \alpha \),\(a/\!/\beta \),\(b/\!/\beta \),则\(\alpha /\!/\beta \)
            • 6.

              \(8.\)已知为三条不重合的直线,为三个不重合的平面其中正确的命题是\((\)   \()\)

              \(①\);      \(②\)

              \(③\);    \(④\); 

              \(⑤\)

              A.\(①⑤\)      
              B.\(①②\)    
              C.\(②④\)   
              D.\(③⑤\)
            • 7. \(10\) 在正四棱柱 \(ABCD-A\)\({\,\!}_{1}\) \(B\)\({\,\!}_{1}\) \(C\)\({\,\!}_{1}\) \(D\)\({\,\!}_{1}\)中, \(O\)为底面 \(ABCD\)的中心, \(P\)\(DD\)\({\,\!}_{1}\)的中点,设 \(Q\)\(CC\)\({\,\!}_{1}\)上的点,则点 \(Q\)满足条件                  时,有平面 \(D\)\({\,\!}_{1}\) \(BQ\)\(/\!/\)平面 \(PAO\)  
            • 8.

              下列命题正确的个数是\((\)   \()\)

              \({{p}_{1}}:\)若\(m,n\)是两条不同的直线,\(\alpha ,\beta \)是两个不同的平面,若\(m{\parallel }\alpha ,n{\parallel }\alpha ,m\subset \beta ,n\subset \beta \),则\(\alpha {\parallel }\beta \)

              \({{p}_{2}}:\)命题“\(\exists {{x}_{0}}\in \mathrm{R},x_{0}^{3}-x_{0}^{2}+1\leqslant 0\)”的否定是“\(\forall x\in R,{{x}^{3}}-{{x}^{2}}+1\geqslant 0\)

              \({{p}_{3}}:\)函数\(y=\sin (\omega x+\dfrac{\pi }{6})\)\(x=2\)处取得最大值,则正数\(\omega \)的最小值为\(\dfrac{\pi }{6}\)

              \({{p}_{4}}:\)若随机变量\(Z\tilde{\ }N\left( \mu ,{{\sigma }^{2}} \right)\),则\(P\left( \mu -\sigma < Z\leqslant \mu +\sigma \right)=0.6826\),\(P\left( \mu -2\sigma < Z\leqslant \mu +2\sigma \right)=0.9544\)\(.\)已知随机变量\(X\tilde{\ }N\left( 6,4 \right)\),则\(P\left( 2 < X\leqslant 8 \right)=0.8185\)


              A.\(1\)个                 
              B.\(2\)个             
              C.\(3\)个                  
              D.\(4\)个
            • 9.

              已知\(m\),\(n\)是两条不同直线,\(α\),\(β\),\(γ \)是三个不同平面,则下列正确的是(    )

              A.若\(m/\!/α\),\(n/\!/α\),则\(m/\!/n\)         
              B.若\(α⊥γ \),\(β⊥γ \),\(β⊥γ \),则\(α/\!/β\)
              C.若\(m/\!/α\),\(m/\!/β\),则\({\,\!}α/\!/β_{\;\;\;\;}\)
              D.若\(m⊥α\),\(n⊥α\),则\(m/\!/n\)  
            • 10.

              如图,在直四棱柱\(ABCDA_{1}B_{1}C_{1}D_{1}\)中,底面是正方形,\(E\),\(F\),\(G\)分别是棱\(B_{1}B\),\(D_{1}D\),\(DA\)的中点.


              求证:\((1)\)平面\(AD_{1}E/\!/\)平面\(BGF\);\((2) D_{1}E⊥AC\).

            0/40

            进入组卷