优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              如图,在三棱柱\(ABC-A_{1}B_{1}C_{1}\)中,\(AB⊥\)平面\(AA_{1}C_{1}C\),\(AA_{1}=AC.\)过\(AA_{1}\)的平面交\(B_{1}C_{1}\)于点\(E\),交\(BC\)于点\(F\).
              \((\)Ⅰ\()\)求证:\(A_{1}C⊥\)平面\(ABC_{1}\);
              \((\)Ⅱ\()\)求证:\(A_{1}A/\!/EF\);
              \((\)Ⅲ\()\)记四棱锥\(B_{1}-AA_{1}EF\)的体积为\(V_{1}\),三棱柱\(ABC-A_{1}B_{1}C_{1}\)的体积为\(V.\)若\( \dfrac {V_{1}}{V}= \dfrac {1}{6}\),求\( \dfrac {BF}{BC}\)的值.
            • 2.
              如图,三棱柱\(ABC-A_{1}B_{1}C_{1}\)中,\(AB⊥\)平面\(AA_{1}C_{1}C\),\(AA_{1}=AB=AC=2\),\(∠A_{1}AC=60^{\circ}.\)过\(AA_{1}\)的平面交\(B_{1}C_{1}\)于点\(E\),交\(BC\)于点\(F\).
              \((\)Ⅰ\()\)求证:\(A_{1}C⊥\)平面\(ABC_{1}\);
              \((\)Ⅱ\()\)求证:四边形\(AA_{1}EF\)为平行四边形;
              \((\)Ⅲ\()\)若\( \dfrac {BF}{BC}= \dfrac {2}{3}\),求二面角\(B-AC_{1}-F\)的大小.
            • 3.
              如图,在底面是菱形的四棱锥\(P-ABCD\)中,\(PA⊥\)平面\(ABCD\),\(∠ABC=60^{\circ}\),\(PA=AB=2\),点\(E\),\(F\)分别为\(BC\),\(PD\)的中点,设直线\(PC\)与平面\(AEF\)交于点\(Q\).
              \((1)\)已知平面\(PAB∩\)平面\(PCD=l\),求证:\(AB/\!/l\).
              \((2)\)求直线\(AQ\)与平面\(PCD\)所成角的正弦值.
            • 4.

              如图,三棱柱\(ABC-{{A}_{1}}{{B}_{1}}{{C}_{1}}\)中,\(AB\bot \)平面\(A{{A}_{1}}{{C}_{1}}C\)\(A{{A}_{1}}=AB=AC=2\)\(\angle {{A}_{1}}AC={{60}^{{}^\circ }}\)\(A{{A}_{1}}\)的平面交\({{B}_{1}}{{C}_{1}}\)于点\(E\),交\(BC\)于点\(F\)



              \((\)Ⅰ\()\)求证:\({{A}_{1}}C\bot \)平面\(AB{{C}_{1}}\);

              \((\)Ⅱ\()\)求证:四边形\(A{{A}_{1}}EF\)为平行四边形;

              \((\)Ⅲ\()\)若\(\dfrac{BF}{BC}=\dfrac{2}{3}\),求二面角\(B-A{{C}_{1}}-F\)的大小.

            • 5. 如图,\(\triangle ABC\)中,\(AC=2\),\(BC=4\),\(∠ACB=90^{\circ}\),\(D\)、\(E\)分别是\(AC\)、\(AB\)的中点,将\(\triangle ADE\)沿\(DE\)折起成\(\triangle PDE\),使面\(PDE⊥\)面\(BCDE\),\(H\)、\(F\)分别是边\(PD\)和\(BE\)的中点,平面\(BCH\)与\(PE\)、\(PF\)分别交于点\(I\)、\(G\).
              \((\)Ⅰ\()\)求证:\(IH/\!/BC\);
              \((\)Ⅱ\()\)求二面角\(P-GI-C\)的余弦值.
            • 6.

              如图,\(AB/\!/\)平面\(\alpha /\!/\)平面\(\beta \),过\(A\),\(B\)的直线\(m\),\(n\)分别交\(\alpha \)、\(\beta \)于\(C\),\(E\)和\(D\),\(F\),若\(AC=2\),\(CE=3\),\(BF=4\),则\(BD\)的长为____________.


            • 7.

              如图,在四棱锥\(P-ABCD\)中,\(PA⊥\)底面\(ABCD\),底面\(ABCD\)为梯形,\(AD/\!/BC\),\(CD=\)\(\sqrt{5}\) ,\(PA=AD=AB=2BC=2\),过\(AD\)的平面分别交\(PB\),\(PC\)于\(M\),\(N\)两点.


              \((\)Ⅰ\()\)求证:\(MN/\!/BC\);

              \((\)Ⅱ\()\)若\(M\)为\(PB\)的中点,求二面角\(P-DN-A\)的余弦值.

            • 8.

              已知\(m\),\(n\)表示两条不同直线,\(α\)表示平面\(.\)下列说法正确的是\((\)  \()\)

              A.若\(m/\!/α\),\(n/\!/α\),则\(m/\!/n\)                      
              B.若\(m⊥α\),\(n⊂α\),则\(m⊥n\)
              C.若\(m⊥α\),\(m⊥n\),则\(n/\!/α\)                      
              D.若\(m/\!/α\),\(m⊥n\),则\(n⊥α\)
            • 9.

              已知四棱锥\(P-ABCD\),底面\(ABCD\)是\(\angle A={{60}^{\circ }}\)、边长为\(2\)的菱形,又,且\(PD=CD\),点\(M\)、\(N\)分别是棱\(AD\)、\(PC\)的中点.



              \((1)\)证明:\(DN/\!/\)平面\(PMB\);

              \((2)\)证明:平面 \(PMB\bot \)平面\(PAD\);

              \((3)\)求二面角\(P-BC-D\)的余弦。

            • 10.

              如图\(1\),在梯形\(ABCD\)中,\(AB/\!/CD\)\(\angle ABC={{90}^{\circ }}\)\(AB=2CD=2BC=4\)\(O\)是边\(AB\)的中点\(.\) 将三角形\(AOD\)绕边\(OD\)所在直线旋转到\({{A}_{1}}OD\)位置,使得\(\angle {{A}_{1}}OB={{120}^{\circ }}\),如图\(2.\) 设\(m\)为平面\({{A}_{1}}DC\)与平面\({{A}_{1}}OB\)的交线.



              \((\)Ⅰ\()\)判断直线\(DC\)与直线\(m\)的位置关系并证明;

              \((\)Ⅱ\()\)若直线\(m\)上的点\(G\)满足\(OG\bot {{A}_{1}}D\),求出\({{A}_{1}}G\)的长;

              \((\)Ⅲ\()\)求直线\({{A}_{1}}O\)与平面\({{A}_{1}}BD\)所成角的正弦值.\(\dfrac{\sqrt{5}}{5}\)

            0/40

            进入组卷