优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.

              在长方体\(ABCD—A_{1}B_{1}C_{1}D_{1}\)中,对角线\(B_{1}D\)与平面\(A_{1}BC_{1}\)相交于点\(E\),则点\(E\)为\(\triangle A_{1}BC_{1}\)的(    )

              A.垂心
              B.重心
              C.外心
              D.内心
            • 2.

              如下图,\(PA\)是圆\(O\)的切线,切点为\(A,PO\)交圆\(O\)于两点,\(PA=\sqrt{3},PB=1\),则\(AC=\)          

            • 3. 如图,\(AB\)是\(⊙O\)的一条切线,切点为\(B\),\(ADE\),\(CFD\)和 \(CGE\)都是\(⊙O\)的割线,\(AC=AB\)
              \((1)\)证明:\(AC^{2}=AD⋅AE\);
              \((2)\)证明:\(FG/\!/AC\).
            • 4. 如图,在\(\triangle ABC\)中,\(∠B=90^{\circ}\),以\(AB\)为直径的\(⊙O\)交\(AC\)于\(D\),过点\(D\)作\(⊙O\)的切线交\(BC\)于\(E\),\(AE\)交\(⊙O\)于点\(F\).
              \((1)\)证明:\(E\)是\(BC\)的中点;
              \((2)\)证明:\(AD⋅AC=AE⋅AF\).
            • 5. 如图,在等腰三角形\(ABC\)中,\(AB=AC\),\(D\)为\(CB\)延长线上一点,\(E\)为\(BC\)延长线上一点,且满足\(AB^{2}=DB⋅CE\).
              \((1)\)求证:\(\triangle ADB\)∽\(\triangle EAC\);
              \((2)\)若\(∠BAC=40^{\circ}\),求\(∠DAE\)的度数.
            • 6. 如图,\(\triangle ABC\)中,边\(AC\)上一点\(F\)分\(AC\)为\( \dfrac {AF}{FC}= \dfrac {2}{3}\),\(BF\)上一点\(G\)分\(BF\)为\( \dfrac {BG}{GF}= \dfrac {3}{2}\),\(AG\)的延长线与\(BC\)交于点\(E\),则\(BE\):\(EC=\) ______ .
            • 7. 如图,平行四边形\(ABCD\)中,\(AE\):\(EB=1\):\(2\),若\(\triangle AEF\)的面积等于\(2cm^{2}\),则\(\triangle CDF\)的面积等于\((\)  \()\) 
              A.\(16\) \(cm^{2}\)
              B.\(18\) \(cm^{2}\)
              C.\(20\) \(cm^{2}\)
              D.\(22\) \(cm^{2}\)
            • 8. 如图所示,已知\(PA\)与\(⊙O\)相切,\(A\)为切点,\(PBC\)为割线,弦\(CD/\!/AP\),\(AD\)、\(BC\)相交于\(E\)点,\(F\)为\(CE\)上一点,且\(∠EDF=∠ECD\).
              \((1)\)求证:\(\triangle DEF\)∽\(\triangle PEA\);
              \((2)\)若\(EB=DE=6\),\(EF=4\),求\(PA\)的长.
            • 9. 如图,已知\(⊙A\)和\(⊙B\)的公共弦\(CD\)与\(AB\)相交于点\(E\),\(CB\)与\(⊙A\)相切,\(⊙B\)半径为\(2\),\(AE=3\).
              \((\)Ⅰ\()\)求弦\(CD\)的长;
              \((\)Ⅱ\()⊙B\)与线段\(AB\)相交于点\(F\),延长\(CF\)与\(⊙A\)相交于点\(G\),求\(CG\)的长.
            • 10. 如图,在锐角三角形\(ABC\)中,\(D\)为\(C\)在\(AB\)上的射影,\(E\)为\(D\)在\(BC\)上的射影,\(F\)为\(DE\)上一点,且满足\( \dfrac {EF}{FD}= \dfrac {AD}{DB}\).
              \((\)Ⅰ\()\)证明:\(CF⊥AE\);
              \((\)Ⅱ\()\)若\(AD=2\),\(CD=3.DB=4\),求\(\tan ∠BAE\)的值.
            0/40

            进入组卷