优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.

              已知曲线\(C_{1}\):\(\begin{cases} x=-4+\cos t, \\ y=3+\sin t \end{cases}(t\)是参数\()\),\(C\):\(\begin{cases} x=8\cos θ, \\ y=3\sin θ \end{cases}(θ\)是参数\()\).

              \((1)\)化\(C_{1}\),\(C_{2}\)的方程为普通方程,并说明它们分别表示什么曲线;

              \((2)\)若\(C_{1}\)上的点\(P\)对应的参数为\(t= \dfrac{π}{2}\),\(Q\)为\(C_{2}\)上的动点,求\(PQ\)中点\(M\)到直线\(C_{3}\):\(\begin{cases} x=3+2t, \\ y=-2+t \end{cases}(t\)是参数\()\)距离的最小值

            • 2.

              在直角坐标系\(xOy\)中,曲线\({{C}_{1}}\)的参数方程为\(\begin{cases}x= \sqrt{3}\cos θ \\ y=\sin θ\end{cases} (θ \)为参数\()\),以坐标原点为极点,以\(x\)轴的正半轴为极轴,,建立极坐标系,曲线\({{C}_{2}}\)的极坐标方程为\(\rho \sin (\theta +\dfrac{\pi }{4})=2\sqrt{2}\) .

              \((I)\)写出\({{C}_{1}}\)的普通方程和\({{C}_{2}}\)的直角坐标方程;

              \((II)\)设点\(P\)在\({{C}_{1}}\)上,点\(Q\)在\({{C}_{2}}\)上,求\(|PQ|\)的最小值及此时\(P\)的直角坐标.

            • 3.
              \((1)\)将参数方程转化为普通方程:\( \begin{cases} \overset{x=\sin \theta +\cos \theta }{y=1+\sin 2\theta }\end{cases}(θ{为参数})\)
              \((2)\)求椭圆\( \dfrac {x^{2}}{9}+ \dfrac {y^{2}}{4}=1\)的参数方程:
              \(①\)设\(x=3\cos φ\),\(φ\)为参数;
              \(②\)设\(y=2t\),\(t\)为参数.
            • 4.

              以平面直角坐标系的原点为极点,以\(x\)轴的正半轴为极轴,建立极坐标系,则曲线\(\begin{cases}x= \sqrt{7}\cos φ \\ y= \sqrt{7}\sin ϕ\end{cases} (φ \)为参数\()\)上的点到曲线\(ρ\cos θ+ρ\sin θ=4 \)的最短距离是

              A.\(2 \sqrt{2}- \sqrt{7} \)
              B.\(0\)
              C.\(1\)
              D.\(2 \sqrt{2} \)
            • 5.

              曲线\(C\)的参数方程为\(\begin{cases}x=\sin α-\cos α \\ y=\sin 2α\end{cases} (α\)为参数\()\),则它的普通方程为(    )

              A.\(y\)\(=\) \(x\)\({\,\!}^{2}+1\)                            
              B.\(y\)\(=-\) \(x\)\({\,\!}^{2}+1\)   
              C.\(y=-x^{2}+1\) ,\(x∈[- \sqrt{2} , \sqrt{2} ]\)  
              D.\(y\)\(=\) \(x\)\({\,\!}^{2}+1\), \(x\)\(∈[- \sqrt{2} , \sqrt{2} ]\)
            • 6.

              已知曲线\(a > 0,b > 0,\),曲线\(C\)上任意一点\(P\)作与\(l\)夹角为\(30^{\circ}\)的直线,交\(l\)于点\(A\),则\(\left| PA \right|\)的最大值是\((\)  \()\)

              A.\(5\sqrt{5}\)
              B.\(\dfrac{24\sqrt{5}}{5}\)
              C.\(\dfrac{23\sqrt{5}}{5}\)
              D.\(\dfrac{22\sqrt{5}}{5}\) 
            • 7.

              在直角坐标系\(x\)\(O\)\(y\)中,已知曲线\({C}_{1}:\begin{cases}x=\cos α \\ y={\sin }^{2}α\end{cases} (α\)为参数\()\),在以\(O\)为极点,\(x\)轴正半轴为极轴的极坐标系中,曲线\({C}_{2}:ρ\cos (θ- \dfrac{π}{4})=- \dfrac{ \sqrt{2}}{2} \),曲线\(C_{3}\):\(ρ=2\)\(\sin \)\(θ.\)

              \((\)\(l\)\()\)求曲线\(C_{1}\)与\(C_{2}\)的交点\(M\)的直角坐标;

              \((2)\)设点\(A\),\(B\)分别为曲线\(C_{2}\),\(C_{3}\)上的动点,求\(|AB|\)的最小值.

            • 8.

              在同一平面直角坐标系中,经过伸缩变换\(\begin{cases} & {x}{{{'}}}=3x \\ & {y}{{{'}}}=2y \end{cases}\) 后,曲线\({{C}_{1}}\)变为曲线\(4{{{x}{{{'}}}}^{2}}+9{{{y}{{{'}}}}^{2}}-24{x}{{{'}}}=0\),以坐标原点为极点,\(x\)轴正半轴为极轴建立极坐标系.

              \((\)Ⅰ\()\)求\({{C}_{1}}\)的极坐标方程;

              \((\)Ⅱ\()\)设曲线\({{C}_{2}}\)的极坐标方程为\(\rho \sin \left( \dfrac{\pi }{6}-\theta \right)=1\),且曲线\({{C}_{2}}\)与曲线\({{C}_{1}}\)相交于\(P\),\(Q\)两点,求\(\left| PQ \right|\)的值.

            • 9.

              选修\(4—4\):坐标系与参数方程

              在极坐标系中,圆\(C\)的极坐标方程为:\(ρ^{2}=4ρ(\cos θ+\sin θ)-6.\)若以极点\(O\)为原点,极轴所在直线为\(x\)轴建立平面直角坐标系.

              \((\)Ⅰ\()\)求圆\(C\)的参数方程;

              \((\)Ⅱ\()\)在直角坐标系中,点\(P(x,y)\)是圆\(C\)上动点,试求\(x+y\)的最大值,并求出此时点\(P\)的直角坐标.

            • 10.

              已知曲线\({{C}_{1}}\)的参数方程为\(\,\{\begin{matrix} x=1+\dfrac{1}{2}t \\ y=\dfrac{\sqrt{3}}{2}t \\\end{matrix}(\)为参数\().\)在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线\({{C}_{2}}\):\(\,{{\rho }^{2}}=\dfrac{12}{3+{si}{{{n}}^{2}}\theta }\).

              \((\)Ⅰ\()\)求曲线\({{C}_{1}}\)的普通方程和\({{C}_{2}}\)的直角坐标方程;

              \((\)Ⅱ\()\)若\({{C}_{1}}\)与\({{C}_{2}}\)相交于\(A\),\(B\)两点,设点\(F\left( 1,0 \right)\),求\(\dfrac{1}{\left| FA \right|}+\dfrac{1}{\left| FB \right|}\)的值.

            0/40

            进入组卷