优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.

              已知数列\(\left\{ {{a}_{n}} \right\}\)的前\(n\)项和\({{S}_{n}}\)满足:\({{S}_{n}}=1-{{a}_{n}}\).

              \((1)\)求\(\left\{ {{a}_{n}} \right\}\)的通项公式;

              \((2)\)设\({{c}_{n}}=4{{a}_{n}}+1\),求数列\(\left\{ {{c}_{n}} \right\}\)的前\(n\)项和\({{T}_{n}}\).

            • 2.

              在等差数列\(\left\{ {{a}_{n}} \right\}\)中,\({{a}_{2}}=4,{{a}_{4}}+{{a}_{7}}=15\),

              \((1)\)求数列\(\left\{ {{a}_{n}} \right\}\)的通项\({{a}_{n}}\);

              \((2)\)若\({{b}_{n}}=\dfrac{{{a}_{1}}+{{a}_{2}}+\cdot \cdot \cdot +{{a}_{n}}}{n}\),求数列\(\left\{ {{3}^{2{{b}_{n}}-4}} \right\}\)的前\(n\)项和。

            • 3.

              在单调递增的等差数列\(\left\{ {{a}_{n}} \right\}\)中,\({{a}_{3}},{{a}_{7}},{{a}_{15}}\)成等比数列,前\(5\)项之和等于\(20\) .

              \((1)\)求数列\(\left\{ {{a}_{n}} \right\}\)的通项公式;

              \((2)\)设\({{b}_{n}}=\dfrac{2}{{{a}_{n}}{{a}_{n+1}}}\),记数列\(\left\{ {{b}_{n}} \right\}\)的前\(n\)项和为\({{T}_{n}}\),求使\({{T}_{n}}\leqslant \dfrac{24}{25}\)成立的\(n\)的最大值.

            • 4.
              若等比数列\(\{a_{n}\}\)的各项均为正数,且\(a_{7}a_{11}+a_{8}a_{10}=2e^{4}\),\(\ln a_{1}+\ln a_{2}+\ln a_{3}+…+\ln a_{17}=\) ______
            • 5.

              等比数列\(\left\{{a}_{n}\right\} \)中,\({a}_{2}=9,{a}_{5}=243 \),则\(\left\{{a}_{n}\right\} \)的前\(4\)项和为\((\)   \()\)

              A.\(81\)           
              B.\(120\)           
              C.\(168\)           
              D.\(192\)
            • 6.
              已知数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}\)满足:\(S_{n}=t(S_{n}-a_{n}+1)(t\)为常数,且\(t\neq 0\),\(t\neq 1)\).
              \((1)\)求\(\{a_{n}\}\)的通项公式;
              \((2)\)设\(b_{n}=a_{n}^{2}+S_{n}a_{n}\),若数列\(\{b_{n}\}\)为等比数列,求\(t\)的值;
              \((3)\)在满足条件\((2)\)的情形下,设\(c_{n}=4a_{n}+1\),数列\(\{c_{n}\}\)的前\(n\)项和为\(T_{n}\),若不等式\( \dfrac {12k}{4+n-T_{n}}\geqslant 2n-7\)对任意的\(n∈N^{*}\)恒成立,求实数\(k\)的取值范围.
            • 7.

              \(( 1 )\)已知向量\(\overrightarrow{a},\overrightarrow{b}\),满足\(\overrightarrow{a}=\left( 1,3 \right)\),\(\left( \overrightarrow{a}+\overrightarrow{b} \right)\bot \left( \overrightarrow{a}-\overrightarrow{b} \right)\),则\(\left| \overrightarrow{b} \right|=\)______.

              \(( 2 )\)已知实数\(x,y\)满足\(\begin{cases} & x\leqslant 3 \\ & x+y-3\geqslant 0 \\ & x-y+1\geqslant 0 \\ \end{cases}\),则\({{x}^{2}}+{{y}^{2}}\)的最小值是     

              \(( 3 )\)已知圆\(O:{{x}^{2}}+{{y}^{2}}=1.\)圆\({O}{{'}}\)与圆\(O\)关于直线\(x+y-2=0\)对称,则圆\({O}{{'}}\)的方程是__________.

              \(( 4 )\)已知数列\(\left\{ a{}_{n} \right\},\left\{ {{b}_{n}} \right\}\)满足\(b{}_{n}=\log {}_{2}a{}_{n},n\in {{N}^{*}}\),其中\(\left\{ {{b}_{n}} \right\}\)是等差数列,且\({{a}_{9}}{{a}_{2009}}=\dfrac{1}{4}.\)则\({{b}_{1}}+{{b}_{2}}+{{b}_{3}}+\cdot \cdot \cdot +{{b}_{2017}}=\)__________.

            • 8.
              已知等差数列\(\{a_{n}\}\)的公差不为零,且满足\(a_{1}=6\),\(a_{2}\),\(a_{6}\),\(a_{14}\)成等比数列.
              \((1)\)求数列\(\{a_{n}\}\)的通项公式;
              \((2)\)记\(b_{n}= \dfrac {2}{(n+1)a_{n}}\),求数列\(\{b_{n}\}\)的前\(n\)项和\(S_{n}\).
            • 9.

              \((1)\)不等式\(\dfrac{1}{x} < 1\)的解集是________.

              \((2)\)已知\(a\),\(b\)是互异的正数,\(A\)是\(a\),\(b\)的等差中项,\(G\)是\(a\),\(b\)的正的等比中项,则\(A\)________\(G( > , < ,\geqslant ,\leqslant \)选填其中一个\()\).

              \((3)\)已知\(\sin (60{}^\circ +\alpha )=\dfrac{5}{13}\),\(30^{\circ} < a < 120^{\circ}\),则\(\cos α=\)________.

              \((4)\)如图在正方体\(ABCD—A_{1}B_{1}C_{1}D_{1}\)中,给出以下结论


              \(①A_{1}C_{1}\)与平面\(A_{1}B_{1}CD\)成\(45^{\circ}\)角;

              \(②CD_{1}\)与\(BC_{1}\)成\(60^{\circ}\)角;

              \(③{{V}_{B1}}_{-{{A}_{1}}B{{C}_{1}}}=\dfrac{1}{2}{{V}_{B}}{{_{1}}_{-A{{D}_{1}}C}}\);

              \(④\)正方体的内切球,与各条棱相切的球,外接球的表而积之比为\(1︰2︰3\)其中正确的结论序号是________\(.(\)写出所有正确结论的序号\()\)

            • 10.
              设各项均为正数的等比数列\(\{a_{n}\}\)中,\(a_{1}a_{3}=64\),\(a_{2}+a_{4}=72\).
              \((1)\)求数列\(\{a_{n}\}\)的通项公式;
              \((2))\)设\(b_{n}= \dfrac {1}{n\log _{2}a_{n}}\),\(S_{n}\)是数列\(\{b_{n}\}\)的前\(n\)项和,不等式\(S_{n} > \log _{a}(a-2)\)对任意正整数\(n\)恒成立,求实数\(a\)的取值范围.
            0/40

            进入组卷