优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1. 已知数列\(\{{{a}_{n}}\}\)的前\(n\)项和为\({{S}_{n}}\),若\(3{{S}_{n}}=2{{a}_{n}}-3n\),则\({{a}_{2018}}=\)

              A.\({{2}^{2018}}-1\)
              B.\({{3}^{2018}}-6\)
              C.\({{\left( \dfrac{1}{2} \right)}^{2018}}-\dfrac{7}{2}\)
              D.\({{\left( \dfrac{1}{3} \right)}^{2018}}-\dfrac{10}{3}\) 
            • 2.

              \((\)活页\(89\)页第\(10\)题\()\)已知数列\(\{a_{n}\}\)满足\(a_{n+1}= \dfrac{1}{2}a_{n}+ \dfrac{1}{3}(n=1,2,3,…)\).

              \((1)\)当\(a_{n}\neq \dfrac{2}{3}\)时,求证\(\left\{ \left. a_{n}- \dfrac{2}{3} \right. \right\}\)是等比数列;

              \((2)\)当\(a_{1}= \dfrac{7}{6}\)时,求数列\(\{a_{n}\}\)的通项公式.

            • 3. 求下列数列的通项公式.
              \((1)\)已知\(\{a\)\({\,\!}_{n}\)\(\}\)满足\(a\)\({\,\!}_{1}\)\(=0\),\(a\)\({\,\!}_{n+1}\)\(=a\)\({\,\!}_{n}\)\(+n\),求数列\(\{a\)\({\,\!}_{n}\)\(\}\)的一个通项公式\(\left( \left. 已知1+2+…+n= \dfrac{n(n+1)}{2} \right. \right)\)

              \((2)\)已知数列\(\{a\)\({\,\!}_{n}\)\(\}\)满足\(a\)\({\,\!}_{1}\)\(=1\),\( \dfrac{a_{n+1}}{a_{n}}\)\(=\)\( \dfrac{n+2}{n}\),求数列\(\{a\)\({\,\!}_{n}\)\(\}\)的一个通项公式.

            • 4.

              已知数列\(\left\{ {{a}_{n}} \right\}\)的前\(n\)项的和\(S_{n}\),满足\(\dfrac{3}{2}{{a}_{n}}={{S}_{n}}+2+{{(-1)}^{n}}(n\in {{N}^{*}})\) .

              \((1)\)求数列\(\left\{ {{a}_{n}} \right\}\)的通项公式.

              \((2)\)设\({T}_{n}= \dfrac{1}{{a}_{1}}+ \dfrac{1}{{a}_{2}}+ \dfrac{1}{{a}_{3}}+⋯+ \dfrac{1}{{a}_{n}} \) ,是否存在正整数\(k\),使得当\(n\geqslant 3\)时,\({{T}_{n}}\in \left( \dfrac{k}{10},\dfrac{k+1}{10} \right)\) 如果存在,求出\(k\);如果不存在,请说明理由\(.\) 

            • 5. 数列\(\{a_{n}\}\)满足\(a_{1}=1\),\( \dfrac {1}{2a_{n+1}}= \dfrac {1}{2a_{n}}+1(n∈N^{*}).\)
              \((\)Ⅰ\()\)求证\(\{ \dfrac {1}{a_{n}}\}\)是等差数列;
              \((\)Ⅱ\()\)若\(b_{n}=a_{n}⋅a_{n+1}\),求\(\{b_{n}\}\)的前\(n\)项和\(S_{n}\).
            • 6.
              已知数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),满足\(nS_{n+1}-(n+1)S_{n}=2n^{2}+2n(n∈N^{*})\),\(a_{1}=3\),则数列\(\{a_{n}\}\)的通项\(a_{n}=(\)  \()\)
              A.\(4n-1\)
              B.\(2n+1\)
              C.\(3n\)
              D.\(n+2\)
            • 7.

              若数列\(\{a_{n}\}\)满足\(a_{1}=1\),\((1-a_{n+1})(1+a_{n})=1(n∈N^{*})\),则\(\underset{100}{\overset{k{=}1}{\mathrm{{∑}}}}(a_{k}a_{k+1})\)的值为____\(.\) 

            • 8.

              单调递增数列\(\left\{ {{a}_{n}} \right\}\)的前\(n\)项和为\({{S}_{n}}\),且满足\(4{{S}_{n}}=a_{n}^{2}+4n\).

              \((1)\)求数列\(\left\{ {{a}_{n}} \right\}\)的通项公式;    
              \((2)\)令\({{b}_{n}}=\dfrac{{{a}_{n}}}{{{2}^{n}}}\),求数列\(\left\{ {{b}_{n}} \right\}\)的前\(n\)项和\({{T}_{n}}\).
            • 9.

              已知\(S_{n}\)是数列\(\{a_{n}\}\)的前\(n\)项和,\(a_{1}=2\),且\(4S_{n}=a_{n}·a_{n+1}\),数列\(\{b_{n}\}\)中,\({{b}_{1}}=\dfrac{1}{4}\),且\({{b}_{n+1}}=\dfrac{n{{b}_{n}}}{(n+1)-{{b}_{n}}}\),\(n∈N*\).

              \((1)\)求数列\(\{a_{n}\}\)的通项公式;

              \((2)\)设\({{c}_{n}}=\dfrac{{{a}_{n}}}{{{2}^{\frac{1}{3{{b}_{n}}}+\frac{2}{3}}}}(n∈N*)\),求\(\{c_{n}\}\)的前\(n\)项和\(T_{n}\).

            • 10. 若数列\(\{a_{n}\}\)满足条件:存在正整数\(k\),使得\(a_{n+k}+a_{n-k}=2a_{n}\)对一切\(n∈N^{*}\),\(n > k\)都成立,则称数列\(\{a_{n}\}\)为\(k\)级等差数列.
              \((1)\)已知数列\(\{a_{n}\}\)为\(2\)级等差数列,且前四项分别为\(2\),\(0\),\(4\),\(3\),求\(a_{8}+a_{9}\)的值;
              \((2)\)若\(a_{n}=2n+\sin ωn(ω\)为常数\()\),且\(\{a_{n}\}\)是\(3\)级等差数列,求\(ω\)所有可能值的集合,并求\(ω\)取最小正值时数列\(\{a_{n}\}\)的前\(3n\)项和\(S_{3n}\);
              \((3)\)若\(\{a_{n}\}\)既是\(2\)级等差数列\(\{a_{n}\}\),也是\(3\)级等差数列,证明:\(\{a_{n}\}\)是等差数列.
            0/40

            进入组卷