优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.

              已知等差数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}\)满足\(S_{3}=0\),\(S_{5}=-5\).

              \((\)Ⅰ\()\)求\(\{a_{n}\}\)的通项公式;

              \((\)Ⅱ\()\)求数列\(\{\)\(\}\)的前\(n\)项和.


            • 2.

              设数列\(\{a_{n}\}\)中, \(a_{1}=2\), \(a_{n+1}= \dfrac{2}{a_{n}+1}\), \(b_{n}=\left| \left. \dfrac{a_{n}+2}{a_{n}-1} \right. \right|\), \(n∈N^{*}\),则数列\(\left\{ \left. b_{n} \right. \right\}\)的通项公式为\(b_{n}=\)__________.

            • 3. 已知数列\(\{a_{n}\}\)满足\(a_{1}=1\),\(a_{n}= \dfrac {a_{n-1}}{2a_{n-1}+1}(n∈N^{*},n\geqslant 2)\),数列\(\{b_{n}\}\)满足关系式\(b_{n}= \dfrac {1}{a_{n}}(n∈N^{*}).\)
              \((1)\)求证:数列\(\{b_{n}\}\)为等差数列;
              \((2)\)求数列\(\{a_{n}\}\)的通项公式.
            • 4.

              已知数列\(\{a_{n}\}\)满足\({{a}_{n+1}}=\dfrac{1}{1-{{a}_{n}}}(n∈N*)\),\(a_{8}=2\),则\(a_{1}\)的值为\((\)    \()\)

              A.\(-1\)
              B.\(1\)
              C.\(\dfrac{1}{2}\).
              D.\(2.\)
            • 5.

              已知 \(\{{a}_{n}\} \) 为等差数列,前\(n\)项和为 \(S_{n}(n\)\(∈N*\)\()\) \(\{{b}_{n}\} \) 是首项为\(2\)的等比数列,且公比大于\(0\), \(b_{2}+b_{3}=12\)  \(b_{3}=a_{4}-2a_{1}\)  \(S_{11}=11b_{4}\) 

              \((\)Ⅰ\()\)求 \(\{{a}_{n}\} \) \(\{{b}_{n}\} \) 的通项公式;

              \((\)Ⅱ\()\)求数列 \(\{a_{2n}b_{2n-1}\}\) 的前\(n\)项和 \((n\)\(∈N*\)\()\)

            • 6.

              已知数列\(\{a_{n}\}\)中,\(a_{1}=1\),前\(n\)项和\({{S}_{n}}=\dfrac{n+{2}}{{3}}{{a}_{n}}\).

              \((1)\)求\(a_{2}\),\(a_{3}\);

              \((2)\)求\(\{a_{n}\}\)的通项公式.

            • 7.
              数列\(\{a_{n}\}\)满足\(a_{n+1}= \dfrac {a_{n}}{2a_{n}+1}\),\(a_{1}=1\).
              \((1)\)证明:数列\(\{ \dfrac {1}{a_{n}}\}\)是等差数列;
              \((2)\)求数列\(\{ \dfrac {1}{a_{n}}\}\)的前\(n\)项和\(S_{n}\),并证明\( \dfrac {1}{S_{1}}+ \dfrac {1}{S_{2}}+…+ \dfrac {1}{S_{n}} > \dfrac {n}{n+1}\).
            • 8. 在数列\(\{a_{n}\}\)中,\(a_{1}=1\),\(a_{n+1}= \dfrac {2a_{n}}{2+a_{n}}(n∈N^{*})\),
              \((1)\)写出这个数列的前\(5\)项;
              \((2)\)根据数列的前\(5\)项写出这个数列的一个通项公式\((\)不需要证明\()\);
              \((3)\)令\(b_{n}= \dfrac {a_{n}a_{n+1}}{4}\),证明:\(b_{1}+b_{2}+…+b_{n} < \dfrac {1}{2}\)成立.
            • 9.

              已知非零数列\(\{a_{n}\}\)的递推公式为\(a_{1}=1\),\(a_{n}= \dfrac{n}{n-1}·a_{n-1}(n > 1)\),则\(a_{4}=(\)  \()\)

              A.\(3\) 
              B.\(2\) 
              C.\(4\) 
              D.\(1\)
            • 10.

              在数列\(\{a_{n}\}\)中,已知\(a_{1}=1\),\({{a}_{n}}=\dfrac{{{a}_{n-1}}}{3{{a}_{n-1}}+1}(n\geqslant 2)\),\({{b}_{n}}=\dfrac{1}{{{a}_{n}}}\).

              \((1)\)求证:数列\(\{b_{n}\}\)是等差数列;

              \((2)\)求数列\(\{a_{n}\}\)的通项公式.

            0/40

            进入组卷