优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              已知数列\(\{a_{n}\}\)的各项均为正数,其前\(n\)项和为\(S_{n}\),且满足\(a_{1}=1\),\(a_{n+1}=2 \sqrt {S_{n}}+1\),\(n∈N^{*}\).
              \((1)\)求\(a_{2}\)的值;
              \((2)\)求数列\(\{a_{n}\}\)的通项公式;
              \((3)\)是否存在正整数\(k\),使\(a_{k}\),\(S_{2k-1}\),\(a_{4k}\)成等比数列?若存在,求\(k\)的值,若不存在,请说明理由.
            • 2.
              若\(a_{1} > 0\),\(a_{1}\neq 1\),\(a_{n+1}= \dfrac {2a_{n}}{1+a_{n}}(n=1,2,…)\)
              \((1)\)求证:\(a_{n+1}\neq a_{n}\);
              \((2)\)令\(a_{1}= \dfrac {1}{2}\),写出\(a_{2}\)、\(a_{3}\)、\(a_{4}\)、\(a_{5}\)的值,观察并归纳出这个数列的通项公式\(a_{n}\);
              \((3)\)证明:存在不等于零的常数\(p\),使\(\{ \dfrac {a_{n}+P}{a_{n}}\}\)是等比数列,并求出公比\(q\)的值.
            • 3.
              已知正项数列\(n\)的前\(n\)项和为\(S_{n}\),且\(a_{1}=1\),\(a_{n+1}^{2}=S_{n+1}+S_{n}\).
              \((1)\)求数列\(\{a_{n}\}\)的通项公式;
              \((2)\)设\(b_{n}=a_{2n-1}\cdot 2^{a_{n}}\),求数列\(\{b_{n}\}\)的前\(n\)项和\(T_{n}\).
            • 4.
              数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),若对于任意的正整数\(n\)都有\(S_{n}=2a_{n}-3n\).
              \((1)\)设\(b_{n}=a_{n}+3\),求证:数列\(\{b_{n}\}\)是等比数列,并求出\(\{a_{n}\}\)的通项公式;
              \((2)\)求数列\(\{na_{n}\}\)的前\(n\)项和.
            • 5.
              设\(S_{n}\)为各项不相等的等差数列\(\{a_{n}\}\)的前\(n\)项和,已知\(a_{3}a_{5}=3a_{7}\),\(S_{3}=9\).
              \((1)\)求数列\(\{a_{n}\}\)通项公式;
              \((2)\)设\(T_{n}\)为数列\(\{ \dfrac {1}{a_{n}a_{n+1}}\}\)的前\(n\)项和.
            • 6.
              已知递增数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),且满足\(2S_{n}= a_{ n }^{ 2 }+n\).
              \((I)\)求\(a_{n}\);
              \((II)\)设\(b_{n}=a_{n+1}\cdot 2^{n}\),求数列\(\{b_{n}\}\)的前\(n\)项和\(T_{n}\).
            • 7.
              数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),\(a_{1}=1\),\(S_{n}= \dfrac {a_{n+1}-1}{2}(n∈N^{*})\),
              \((1)\)求\(\{a_{n}\}\)的通项公式;
              \((2)\)等差数列\(\{b_{n}\}\)的各项均为正数,其前\(n\)项和为\(T_{n}\),且\(T_{3}=15\),又\(a_{1}+b_{1}\),\(a_{2}+b_{2}\),\(a_{3}+b_{3}\)成等比数列,求\(T_{n}\).
            • 8.
              设数列\(\{a_{n}\}\)满足:\(a_{1}=1\),\(a_{n+1}=2a_{n}+1\).
              \((1)\)证明:数列\(\{a_{n}+1\}\)为等比数列,并求出数列\(\{a_{n}\}\)的通项公式;
              \((2)\)求数列\(\{n⋅(a_{n}+1)\}\)的前\(n\)项和\(T_{n}\).
            • 9.
              已知数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),\(S_{n}= \dfrac {1}{3}(a_{n}-1)(n∈N^{*})\)
              \((1)\)求\(a_{1}\),\(a_{2}\),\(a_{3}\)的值.
              \((2)\)求\(a_{n}\)的通项公式.
            • 10.
              我国古代数学名著\(《\)九章算术\(》\)中,有已知长方形面积求一边的算法,其方法的前两步为:
              第一步:构造数列\(1\),\( \dfrac {1}{2}\),\( \dfrac {1}{3}\),\( \dfrac {1}{4}\),\(…\),\( \dfrac {1}{n}.①\)
              第二步:将数列\(①\)的各项乘以\(n\),得到数列\((\)记为\()a_{1}\),\(a_{2}\),\(a_{3}\),\(…\),\(a_{n}.\)则\(a_{1}a_{2}+a_{2}a_{3}+…+a_{n-1}a_{n}=\) ______ .
            0/40

            进入组卷