优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              在数列\(\{a_{n}\}\)中,若\(a_{1}\),\(a_{2}\)是整数,且\(a_{n}= \begin{cases} \overset{5a_{n-1}-3a_{n-2},a_{n-1}\cdot a_{n-2}{为偶数}}{a_{n-1}-a_{n-2},a_{n-1}\cdot a_{n-2}{为奇函数}}\end{cases}\),\((n∈N^{*}\),且\(n\geqslant 3)\)
              \((\)Ⅰ\()\)若\(a_{1}=1\),\(a_{2}=2\),写出\(a_{3}\),\(a_{4}\),\(a_{5}\)的值;
              \((\)Ⅱ\()\)若在数列\(\{a_{n}\}\)的前\(2018\)项中,奇数的个数为\(t\),求\(t\)得最大值;
              \((\)Ⅲ\()\)若数列\(\{a_{n}\}\)中,\(a_{1}\)是奇数,\(a_{2}=3a_{1}\),证明:对任意\(n∈N^{*}\),\(a_{n}\)不是\(4\)的倍数.
            • 2.
              等差数列\(\{a_{n}\}\)的首项为\(1\),公差不为\(0\),且\(a_{2}\),\(a_{3}\),\(a_{6}\)成等比数列,则\(S_{6}=\) ______ .
            • 3.
              对于各项均为整数的数列\(\{a_{n}\}\),如果满足\(a_{m}+m(m=1,2,3,…)\)为完全平方数,则称数列\(\{a_{n}\}\)具有“\(M\)性质”;不论数列\(\{a_{n}\}\)是否具有“\(M\)性质”,如果存在与\(\{a_{n}\}\)不是同一数列的\(\{b_{n}\}\),且\(\{b_{n}\}\)同时满足下面两个条件:\(①b_{1}\),\(b_{2}\),\(b_{3}\),\(…\),\(b_{n}\)是\(a_{1}\),\(a_{2}\),\(a_{3}\),\(…\),\(a_{n}\)的一个排列;\(②\)数列\(\{b_{n}\}\)具有“\(M\)性质”,则称数列\(\{a_{n}\}\)具有“变换\(M\)性质”.
              \((\)Ⅰ\()\)设数列\(\{a_{n}\}\)的前\(n\)项和\(S_{n}= \dfrac {n}{3}(n^{2}-1)\),证明数列\(\{a_{n}\}\)具有“\(M\)性质”;
              \((\)Ⅱ\()\)试判断数列\(1\),\(2\),\(3\),\(4\),\(5\)和数列\(1\),\(2\),\(3\),\(…\),\(11\)是否具有“变换\(M\)性质”,具有此性质的数列请写出相应的数列\(\{b_{n}\}\),不具此性质的说明理由;
              \((\)Ⅲ\()\)对于有限项数列\(A\):\(1\),\(2\),\(3\),\(…\),\(n\),某人已经验证当\(n∈[12,m^{2}](m\geqslant 5)\)时,数列\(A\)具有“变换\(M\)性质”,试证明:当\(n∈[m^{2}+1,(m+1)^{2}]\)时,数列\(A\)也具有“变换\(M\)性质”.
            • 4.
              已知数列\(1\),\(1\),\(2\),\(1\),\(2\),\(4\),\(1\),\(2\),\(4\),\(8\),\(1\),\(2\),\(4\),\(8\),\(16\),\(…\),其中第一项是\(2^{0}\),接下来的两项是\(2^{0}\),\(2^{1}\),再接下来的三项是\(2^{0}\),\(2^{1}\),\(2^{2}\),依此类推\(.\)设该数列的前\(n\)项和为\(S_{n}\),
              规定:若\(∃m∈N^{*}\),使得\(S_{m}=2^{p}(p∈N)\),则称\(m\)为该数列的“佳幂数”.
              \((\)Ⅰ\()\)将该数列的“佳幂数”从小到大排列,直接写出前\(3\)个“佳幂数”;
              \((\)Ⅱ\()\)试判断\(50\)是否为“佳幂数”,并说明理由;
              \(( III)( i)\)求满足\(m > 70\)的最小的“佳幂数”\(m\);
              \(( ii)\)证明:该数列的“佳幂数”有无数个.
            • 5.
              设\(\{a_{n}\}\)是公差比为\(q\)的等比数列.
              \((\)Ⅰ\()\)推导\(\{a_{n}\}\)的前\(n\)项和\(S_{n}\)公式\((\)用\(a_{1}\),\(q\)表示\()\);
              \((\)Ⅱ\()\)若\(S_{3}\),\(S_{9}\),\(S_{6}\)成等差数列,求证\(a_{2}\),\(a_{8}\),\(a_{5}\)成等差数列.
            • 6.
              在等差数列\(\{a_{n}\}\)中,公差\(d\neq 0\),且\(a_{1}\),\(a_{4}\),\(a_{10}\)成等比数列,则\( \dfrac {a_{1}}{d}\)的值为 ______ .
            • 7.
              已知各项不为\(0\)的等差数列\(\{a_{n}\}\)满足\(a_{6}-a \;_{ 7 }^{ 2 }+a_{8}=0\),数列\(\{b_{n}\}\)是等比数列,且\(b_{7}=a_{7}\),则\(b_{2}⋅b_{8}⋅b_{11}=(\)  \()\)
              A.\(8\)
              B.\(2\)
              C.\(4\)
              D.\(1\)
            • 8.
              已知数列\(\{a_{n}\}\)为等比数列,且\(a_{2}=1\),\(a_{5}=27\),\(\{b_{n}\}\)为等差数列,且\(b_{1}=a_{3}\),\(b_{4}=a_{4}\).
              \((I)\)分别求数列\(\{a_{n}\}\),\(\{b_{n}\}\)的通项公式.
              \((II)\)设数列\(\{b_{n}\}\)的前\(n\)项和为\(S_{n}\),求数列\(\{ \dfrac {2}{S_{n}}\}\)的前\(n\)项和\(T_{n}\).
            • 9.
              已知公差为\(1\)的等差数列\(\{a_{n}\}\)中,\(a_{1}\),\(a_{2}\),\(a_{4}\)成等比数列,则\(\{a_{n}\}\)的前\(100\)项和为 ______ .
            • 10.
              已知等差数\(\{a_{n}\}\)的公差不为零\(a_{1}=2\),\(a_{1}\),\(a_{3}\),\(a_{11}\)成等比数列.
              \((I)\)求\(\{a_{n}\}\)的通项公式.
              \((II)\)求\(a_{1}+a_{3}+a_{5}+…+a_{2n-1}\).
            0/40

            进入组卷