优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1. 如图,平面\(ABEF⊥\)平面\(ABC\),四边形\(ABEF\)为矩形,\(AC=BC.O\)为\(AB\)的中点,\(OF⊥EC\).
              \((\)Ⅰ\()\)求证:\(OE⊥FC\);
              \((\)Ⅱ\()\)若二面角\(F-CE-B\)的余弦值为\(- \dfrac {1}{3}\)时,求\( \dfrac {AC}{AB}\)的值.
            • 2. 如图,在以 \(A\)\(B\)\(C\)\(D\)\(E\)\(F\)为顶点的五面体中,面 \(ABEF\)为正方形, \(AF\)\(=2\) \(FD\),\(\angle AFD={{90}^{\circ }}\),且二面角 \(D\)\(-\) \(AF\)\(-\) \(E\)与二面角 \(C\)\(-\) \(BE\)\(-\) \(F\)都是\({{60}^{\circ }}\).

              \((I)\)证明:平面\(ABEF\)\(\bot \)平面\(EFDC\)

              \((II)\)求二面角\(E\)\(-\)\(BC\)\(-\)\(A\)的余弦值.

            • 3. 如图,在三棱锥\(C-OAB\)中,\(CO⊥\)平面\(AOB\),\(OA=OB=2OC=2\),\(AB=2 \sqrt {2}\),\(D\)为\(AB\)的中点.
              \((\)Ⅰ\()\)求证:\(AB⊥\)平面\(COD\);
              \((\)Ⅱ\()\)若动点\(E\)满足\(CE/\!/\)平面\(AOB\),问:当\(AE=BE\)时,平面\(ACE\)与平面\(AOB\)所成的锐二面角是否为定值?若是,求出该锐二面角的余弦值;若不是,说明理由.
            • 4.
              如图,在四棱锥\(P-ABCD\)中,底面\(ABCD\)是正方形,侧棱\(PD⊥\)底面\(ABCD\),\(PD=DC\),\(E\)是\(PC\)的中点,作\(EF⊥PB\)交\(PB\)于点\(F\).
              \((\)Ⅰ\()\)求证:\(PA/\!/\)平面\(EDB\);
              \((\)Ⅱ\()\)求二面角\(F-DE-B\)的正弦值.
            • 5.

              如图,菱形\(ABCD\)的对角线\(AC\)\(BD\)交于点\(O\)\(AB\)\(=5\),\(AC\)\(=6\),点\(E\)\(F\)分别在\(AD\)\(CD\)上,\(AE\)\(=\)\(CF\)\(=\dfrac{5}{4}\),\(EF\)\(BD\)于点\(H\)\(.\)将\(\triangle \)\(DEF\)沿\(EF\)折到\(\triangle {D}{{'}}EF\)的位置,\(O{D}{{'}}=\sqrt{10}\) .


              \((\)Ⅰ\()\)证明:\({D}{{'}}H\bot \)平面\(ABCD\)

              \((\)Ⅱ\()\)求二面角\(B-{D}{{'}}A-C\)的正弦值\(.\)  

            • 6.

              如图,在棱长为\(2\)的正方体\(ABCD-{A}_{1}{B}_{1}{C}_{1}{D}_{1} \)中,\(E,F,M,N \)分别是棱\(AB,AD,{A}_{1}{B}_{1},{A}_{1}{D}_{1} \)的中点,点\(P,Q \)分别在棱\(D{D}_{1} \),\(B{B}_{1} \)上移动,且\(DP=BQ=\lambda \left( 0 < \lambda < 2 \right)\).


              \((1)\)当\(\lambda =1\)时,证明:直线\(B{{C}_{1}}\parallel \) 平面\(EFPQ;\)

              \((2)\)是否存在\(\lambda \),使平面\(EFPQ\)与面\(PQMN\)所成的二面角为直二面角?若存在,求出\(\lambda \)的值;若不存在,说明理由.

            • 7. 如图:在三棱锥\(P-ABC\)中,\(PB⊥\)面\(ABC\),\(\triangle ABC\)是直角三角形,\(∠B=90^{\circ}\),\(AB=BC=2\),\(∠PAB=45^{\circ}\),点\(D\)、\(E\)、\(F\)分别为\(AC\)、\(AB\)、\(BC\)的中点.
              \((\)Ⅰ\()\)求证:\(EF⊥PD\);
              \((\)Ⅱ\()\)求直线\(PF\)与平面\(PBD\)所成的角的大小;
              \((\)Ⅲ\()\)求二面角\(E-PF-B\)的正切值.
            • 8.

              已知四棱锥\(S-ABCD\)中,底面\(ABCD\)是边长为\(2\)的菱形,\(∠BAD=60^{\circ}\),\(SA=SD= \sqrt{5},SB= \sqrt{7} \),点\(E\)是棱\(AD\)的中点,点\(F\)在棱\(SC\)上,且\( \overset{→}{SF}=λ \overset{→}{SC} \),\(SA/\!/\)平面\(BEF\).


              \((\)Ⅰ\()\)求实数\(λ\)的值;

              \((\)Ⅱ\()\)求二面角\(S-BE-F\)的余弦值.

            • 9. 如图所示,四棱锥\(P-ABCD\)的底面\(ABCD\)是边长为\(1\)的菱形,\(\angle BCD={{60}^{\circ }}\),\(E\)是\(CD\)的中点,\(PA\bot \)底面\(ABCD\),\(PA=\sqrt{3}\).

              \((\)Ⅰ\()\)证明:平面\(PBE ⊥\)平面\(PAB\);
              \((\)Ⅱ\()\)求二面角\(A-BE-P\)的大小.
            • 10.

              如图,四棱锥\(P-ABCD\)的底面\(ABCD\)是直角梯形,\(\angle ABC={{90}^{\circ }}\),\(BC/\!/AD\),且\(AB=AD=2BC\),顶点\(P\)在底面\(ABCD\)内的射影恰好落在\(AB\)的中点\(O\)上\(.\)

                                                                                

              \((1)\)求证:\(PD\bot AC\);

              \((2)\)若\(PO=AB\),求直线\(PD\)与\(AB\)所成角的余弦值;

              \((3)\)若平面\(APB\)与平面\(PCD\)所成的二面角为\({{45}^{\circ }}\),求\(\dfrac{PO}{BC}\)的值.

            0/40

            进入组卷