优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.

              函数列\(\{f_{n}(x)\}\)满足\(f_{1}(x)= \dfrac{x}{ \sqrt{1+x^{2}}}(x > 0)\),\(f_{n+1}(x)=f_{1}[f_{n}(x)]\).

              \((1)\)求\(f\)\({\,\!}_{2}\)\((x)\),\(f\)\({\,\!}_{3}\)\((x)\);

              \((2)\)猜想\(f\)\({\,\!}_{n}\)\((x)\)的表达式,并证明.

            • 2.

              用数学归纳法证明等式:\((n+1)(n+2)…(n+n)=2^{n}·1·3·…·(2n-1)\),从\(k\)到\(k+1\),左边需要增乘的代数式为\((\)  \()\)

              A.\(2k+1\)     
              B.\(2(2k+1)\)      
              C.\( \dfrac{2k+1}{k+1}\)
              D.\( \dfrac{2k+3}{k+1}\)
            • 3.

              观察以下\(3\)个等式:

              \(\dfrac{1}{1\times 3}=\dfrac{1}{2\times 1+1}\)   ,

              \(\dfrac{1}{1\times 3}+\dfrac{1}{3\times 5}=\dfrac{2}{2\times 2+1}\),

              \(\dfrac{1}{1\times 3}+\dfrac{1}{3\times 5}+\dfrac{1}{5\times 7}=\dfrac{3}{2\times 3+1}\),

              \(\cdots \cdots \cdots \cdots \cdots \)

              \((1)\)照以上式子规律,猜想第\(n\)个等式\((n∈N^{*})\);

              \((2)\)用数学归纳法证明上述所猜想的第\(n\)个等式成立\((n∈N^{*}).\)

            • 4.

              用数学归纳法证明不等式:\(\dfrac{1}{n+1}+ \dfrac{1}{n+2}+···+ \dfrac{1}{2n} > \dfrac{13}{24} \) \((n > 1,n∈{N}^{*} )\),在证明\(n=k+1\)这一步时,需要证明的不等式是(    )

              A.\(\dfrac{1}{k+1}+ \dfrac{1}{k+2}+···+ \dfrac{1}{2k} > \dfrac{13}{24} \)       

              B.\(\dfrac{1}{k+1}+ \dfrac{1}{k+3}+···+ \dfrac{1}{2k}+ \dfrac{1}{2k+1} > \dfrac{13}{24} \)

              C.\(\dfrac{1}{k+2}+ \dfrac{1}{k+3}+···+ \dfrac{1}{2k}+ \dfrac{1}{2k+1} > \dfrac{13}{24} \)

              D.\(\dfrac{1}{k+2}+ \dfrac{1}{k+3}+···+ \dfrac{1}{2k}+ \dfrac{1}{2k+1}+ \dfrac{1}{2k+2} > \dfrac{13}{24} \)
            • 5.

              \(S_{n}\)是数列\(\{a_{n}\}\)前\(n\)项和,对\(\forall n\in {{N}^{*}}\),\(S_{n}+a_{n}=2n\)

              \((1)\)求\(a_{1}\),\(a_{2}\),\(a_{3}\),\(a_{4}\);

              \((2)\)归纳数列\(\{a_{n}\}\)的通项公式,并用数学归纳法证明.

            • 6.

              用数学归纳法证明\(\left(n+1\right)\left(n+2\right)···\left(n+n\right)={2}^{n}·1·3·...·\left(2n-1\right) \),从\(k\)到\(k+1\),左边需增乘的式子为(    )

              A.\(2k+1\) 
              B.\(2(2k+1)\) 
              C.\( \dfrac{2k+1}{k+1} \)
              D.\( \dfrac{2k+3}{k+1} \)
            • 7.

              用数学归纳法证明\(1+\dfrac{1}{2}+\dfrac{1}{3}+\cdots +\dfrac{1}{{{2}^{n}}-1} < n(n∈N^{*}\),且\(n > 1)\),第一步即证不等式:________成立。

            • 8.

              已知数列\(\{{{a}_{n}}\}\)中,\({{a}_{1}}=3,{{a}_{n+1}}=\sqrt{a_{n}^{2}-4{{a}_{n}}+5}+2(n\in {{N}^{*}})\)。

              \((\)Ⅰ\()\)计算\({{a}_{2}},{{a}_{3}},{{a}_{4}}\)的值;

              \((\)Ⅱ\()\)根据计算结果猜想\(\{{{a}_{n}}\}\)的通项公式,并用数学归纳法加以证明。

            • 9. 已知数列\(\{a_{n}\}\)、\(\{b_{n}\}\)满足\(a_{1}=-1\),\(b_{1}=1\),\(a_{n+1}= \dfrac {a_{n}}{1-4 b_{ n }^{ 2 }}\),\(b_{n+1}=a_{n+1}b_{n}\),点\(P_{n}\)的坐标为\((a_{n},b_{n})\),且点\(P_{1}\)、\(P_{2}\)在直线\(l\)上.
              \((1)\)求直线\(l\)的方程;
              \((2)\)用数学归纳法证明:对任意\(n∈N^{*}\),点\(P_{n}(a_{n},b_{n})\)在直线\(l\)上.
            • 10. 试从上个式子中择一,求出这个常数;
              某同学在一研究性学习,下五个式子的值等于同一个常数:
              \(\sin 2(2^{\circ})+\cos 25^{\circ}-\sin -25^{\circ})co/\!/5^{\circ}\).
              \(\sin 218+\cos 22-si\) \(18^{\circ}cs\)空格\(12^{\circ}\);
              \(\sin 2(-18^{\circ}\cos 248^{\circ}-\sin (18^{\circ}c/\)格\(48^{\circ}\);
              据计算结果,将该同学的发现推为三恒等式,并明你结论.
            0/40

            进入组卷