优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.

              上一个\(n\)层的台阶,若每次可上\(1\)层或\(2\)层,设所有不同的上法的总数为\(f(n)\),则下列猜想中正确的是(    )

              A.\(f(n)=n\)
              B.\(f(n)=f(n-1)+f(n-2)\)
              C.\(f(n)=f(n-1)×f(n-2)\)
              D.\(f(n)=\begin{cases} & n,n=1,2 \\ & f(n-1)+f(n-2),n\geqslant 3 \end{cases}\)
            • 2.

              已知\((x+1)^{n}=a_{0}+a_{1}(x-1)+a_{2}(x-1)+a_{3}(x-1)^{3}+…+a_{n}(x-1)^{n}\),\((\)其中\(n∈N^{*})\)

              \((1)\)求\(a_{0}\)及\({S}_{n}= \sum\nolimits_{i=1}^{n}{a}_{i} \);

              \((2)\)试比较\(S_{n}\)与\((n-2)2^{n}+2n^{2}\)的大小,并用数学归纳法说明理由.

            • 3.

              已知数列\(\left\{ {{a}_{n}} \right\}\)的前\(n\)和为\({{S}_{n}}\),且满足\({{S}_{2}}=3,\begin{matrix} {} \\ \end{matrix}2{{S}_{n}}=n+n{{a}_{n}},\begin{matrix} {} \\ \end{matrix}n\in {{N}^{*}}\)

              \((1)\)求\({{a}_{1}},{{a}_{2}},{{a}_{3}},{{a}_{4}}\),并求出数列\(\left\{ {{a}_{n}} \right\}\)的通项公式;

              \((2)\)设\({{b}_{n}}={{2}^{{{a}_{n}}+1}}-1\),证明:\(\dfrac{{{b}_{1}}}{{{b}_{2}}}+\dfrac{{{b}_{2}}}{{{b}_{3}}}+\cdots +\dfrac{{{b}_{n}}}{{{b}_{n+1}}} < \dfrac{n}{2}(n\in {{N}^{*}})\)

            • 4.

              用数学归纳法证明不等式\(1+ \dfrac{1}{2}+ \dfrac{1}{4}+…+ \dfrac{1}{2^{n-1}} > \dfrac{127}{64}(n∈N^{*})\)成立,其初始值至少应取\((\)  \()\)

              A.\(7\)                                                  
              B.\(8\)

              C.\(9\)                                                                           
              D.\(10\)
            • 5.
              已知\(f(n)=1+ \dfrac {1}{ \sqrt {2}}+ \dfrac {1}{ \sqrt {3}}+…+ \dfrac {1}{ \sqrt {n}}(n∈N^{*})\),\(g(n)=2( \sqrt {n+1}-1)(n∈N^{*})\).
              \((1)\)当\(n=1\),\(2\),\(3\)时,分别比较\(f(n)\)与\(g(n)\)的大小\((\)直接给出结论\()\);
              \((2)\)由\((1)\)猜想\(f(n)\)与\(g(n)\)的大小关系,并证明你的结论.
            • 6.
              若\(x_{i} > 0(i=1,2,3,…,n)\),观察下列不等式:\((x_{1}+x_{2})( \dfrac {1}{x_{1}}+ \dfrac {1}{x_{2}})\geqslant 4\),\((x_{1}+x_{2}+x_{3})( \dfrac {1}{x_{1}}+ \dfrac {1}{x_{2}}+\; \dfrac {1}{x_{3}})\geqslant 9\),\(…\),

              请你猜测\((x_{1}+x_{2}+…+x_{n})( \dfrac {1}{x_{1}}+ \dfrac {1}{x_{2}}+…+ \dfrac {1}{x_{n}})\)满足的不等式,并用数学归纳法加以证明.
            • 7.
              已知函数\(f(x)=ax+ \dfrac {b}{x}+c(a > 0)\),\(g(x)=\ln x\),其中函数\(f(x)\)的图象在点\((1,f(1))\)处的切线方程为\(y=x-1\).
              \((\)Ⅰ\()\)若\(a=1\),求函数\(f(x)\)的解析式;
              \((\)Ⅱ\()\)若\(f(x)\geqslant g(x)\)在\([1,+∞)\)上恒成立,求实数\(a\)的取值范围;
              \((\)Ⅲ\()\)证明:\(1+ \dfrac {1}{2}+ \dfrac {1}{3}+…+ \dfrac {1}{n} > \ln (n+1)+ \dfrac {n}{2(n+1)}(n\geqslant 1)\).
            • 8.

              由下列各式:\(1 > \dfrac{1}{2},1+ \dfrac{1}{2}+ \dfrac{1}{3} > 1,1+ \dfrac{1}{2} > 1,1+ \dfrac{1}{2}+ \dfrac{1}{3}+ \dfrac{1}{4}+ \dfrac{1}{5}+ \dfrac{1}{6}+ \dfrac{1}{7} > \dfrac{3}{2},1+ \dfrac{1}{2}+ \dfrac{1}{3}+...+ \dfrac{1}{15} > 2,... \)

              猜想第\(n\)个表达式并用数学归纳法给予证明.

            • 9. 由下列式子 




              猜想第n个表达式,并用数学归纳法给予证明.
            • 10. 已知\(f(n)=1+ \dfrac {1}{2^{3}}+ \dfrac {1}{3^{3}}+ \dfrac {1}{4^{3}}+…+ \dfrac {1}{n^{3}}\),\(g(n)= \dfrac {3}{2}- \dfrac {1}{2n^{2}}\),\(n∈N^{*}\).
              \((1)\)当\(n=1\),\(2\),\(3\)时,试比较\(f(n)\)与\(g(n)\)的大小关系;
              \((2)\)猜想\(f(n)\)与\(g(n)\)的大小关系,并给出证明.
            0/40

            进入组卷