优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.

              已知三棱柱\(.ABC-A_{1}B_{1}C_{1}\)的侧棱与底面垂直,底面是边长为\(\sqrt{3}\)的正三角形\(.\)若\(P\)为底面\(A_{1}B_{1}C_{1}\)的中心,\(PA\)与平面\(ABC\)所成角的大小为\(\dfrac{\pi }{3}\),则棱柱\(ABC-A_{1}B_{1}C_{1}\)的体积为(    )

              A.\(\dfrac{1}{4}\)
              B.\(\dfrac{9}{4}\)
              C.\(\dfrac{\sqrt{3}}{4}\)
              D.\(\dfrac{2\sqrt{3}}{4}\)
            • 2.

              如图,在四棱锥\(P-ABCD\)中,侧面\(PAD⊥\)底面\(ABCD\),底面\(ABCD\)是平行四边形,\(∠ABC=45^{\circ}\),\(AD=AP=2\),\(AB=DP=2\sqrt{2}\),\(E\)为\(CD\)的中点,点\(F\)在线段\(PB\)上.

              \((1)\)求证:\(AD⊥PC\);

              \((2)\)当三棱锥\(B-EFC\)的体积等于四棱锥\(P-ABCD\)体积的\(\dfrac{1}{6}\)时,求\(\dfrac{PF}{PB}\)的值.

            • 3. \((\)本小题满分\(12\)分\()\)

              如图,四棱锥\(P\)\(-\)\(ABCD\)中,底面\(ABCD\)为矩形,\(PA\)\(⊥\)平面\(ABCD\)\(E\)\(PD\)的中点.

              \((1)\)证明:\(PB\)\(/\!/\)平面\(AEC\)

              \((2)\)设\(AP\)\(=1\),\(AD\)\(=\) ,三棱锥\(P\)\(­\)\(ABD\)的体积\(V\)\(=\),求\(A\)到平面\(PBC\)的距离.

            • 4.
              如图所示,一圆柱内挖去一个圆锥,圆锥的顶点是圆柱底面的圆心,圆锥的底面是圆柱的另一个底面\(.\)圆柱的母线长为\(6\),底面半径为\(2\),求该几何体的表面积.
            • 5.

              已知正三棱柱的每条棱长均为\(a\),圆柱的底面直径和高均为\(b.\)若它们的体积相等,则\(a^{3}∶b^{3}\)的值为____\(.\) 

            • 6.

              如图所示,在三棱锥\(P - ABC\)中,\(PA⊥\)底面\(ABC\),\(D\)是\(PC\)的中点\(.\)已知\(∠BAC=\dfrac{\pi}{2}\),\(AB=2\),\(AC=2\sqrt{3}\),\(PA=2\).

              \((1)\)求三棱锥\(P - ABC\)的体积\(;\)

              \((2)\)求异面直线\(BC\)与\(AD\)所成角的余弦值.

            • 7.

              各棱长都为\(1\)的正四棱锥体积为________.

            • 8.

              已知三棱锥\(S-ABC\)外接球的直径\(SC=6\),且\(AB=BS=SA=3\),则三棱锥\(S-ABC\)的体积为

              A.\(\dfrac{3\sqrt{2}}{4}\)
              B.\(\dfrac{9\sqrt{2}}{4}\)
              C.\(\dfrac{3\sqrt{2}}{2}\)
              D.\(\dfrac{9\sqrt{2}}{2}\)
            • 9. \((\)本小题满分\(10\)分\()\)如图所示,在三棱柱中,平面

              \((\)Ⅰ\()\)求三棱锥的体积;
              \((\)Ⅱ\()\)若是棱的中点,的中点,证明平行平面
            • 10.
              如图,三棱柱\(ABC-A_{1}B_{1}C_{1}\)中,侧面\(AA_{1}C_{1}C⊥\)侧面\(ABB_{1}A_{1}\),\(AC=AA_{1}= \sqrt {2}AB\),\(∠AA_{1}C_{1}=60^{\circ}.AB⊥AA_{1}\),\(H\)为棱\(CC_{1}\)的中点,\(D\)为\(BB_{1}\)的中点.
              \((\)Ⅰ\()\)求证:\(A_{1}D⊥\)平面\(AB_{1}H\);
              \((\)Ⅱ\()AB= \sqrt {2}\),求三棱柱\(ABC-A_{1}B_{1}C_{1}\)的体积.
            0/40

            进入组卷