优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              数列\(\{a_{n}\}\)中,\(a_{1}=2\),\(a_{n+1}=a_{n}+cn(c\)是不为零的常数,\(n=1\),\(2\),\(3\),\(…)\),且\(a_{1}\),\(a_{2}\),\(a_{3}\)成等比数列.
              \((1)\)求\(c\)的值;
              \((2)\)求\(\{a_{n}\}\)的通项公式;
              \((3)\)设数列\(\{ \dfrac {a_{n}-c}{n\cdot c^{n}}\}\)的前\(n\)项之和为\(T_{n}\),求\(T_{n}\).
            • 2.
              已知数列\(\{a_{n}\}\)为等比数列,且\(a_{2}=1\),\(a_{5}=27\),\(\{b_{n}\}\)为等差数列,且\(b_{1}=a_{3}\),\(b_{4}=a_{4}\).
              \((I)\)分别求数列\(\{a_{n}\}\),\(\{b_{n}\}\)的通项公式.
              \((II)\)设数列\(\{b_{n}\}\)的前\(n\)项和为\(S_{n}\),求数列\(\{ \dfrac {2}{S_{n}}\}\)的前\(n\)项和\(T_{n}\).
            • 3.
              已知等差数\(\{a_{n}\}\)的公差不为零\(a_{1}=2\),\(a_{1}\),\(a_{3}\),\(a_{11}\)成等比数列.
              \((I)\)求\(\{a_{n}\}\)的通项公式.
              \((II)\)求\(a_{1}+a_{3}+a_{5}+…+a_{2n-1}\).
            • 4.
              已知数列\(\{a_{n}\}\)的通项公式为\(a_{n}= \dfrac {1}{n(n+1)}(n∈N^{+})\),其前\(n\)项和\(S_{n}= \dfrac {9}{10}\),则直线\( \dfrac {x}{n+1}+ \dfrac {y}{n}=1\)与坐标轴所围成三角形的面积为\((\)  \()\)
              A.\(36\)
              B.\(45\)
              C.\(50\)
              D.\(55\)
            • 5.
              已知正项数列\(\{a_{n}\}\),\(a_{1}=1\),\(a_{n}=a_{n+1}^{2}+2a_{n+1}\)
              \((\)Ⅰ\()\)求证:数列\(\{\log _{2}(a_{n}+1)\}\)为等比数列:
              \((\)Ⅱ\()\)设\(b_{n}=n1og_{2}(a_{n}+1)\),数列\(\{b_{n}\}\)的前\(n\)项和为\(S_{n}\),求证:\(1\leqslant S_{n} < 4\).
            • 6.

              对于无穷数列\(\{{{a}_{n}}\}\)\(\{{{b}_{n}}\}\),若\({{b}_{k}}=\max \{{{a}_{1}},{{a}_{2}},\cdots ,{{a}_{k}}\}-\min \{{{a}_{1}},{{a}_{2}},\cdots ,{{a}_{k}}\}(k=1,2,3,\cdots )\),则称\(\{{{b}_{n}}\}\)\(\{{{a}_{n}}\}\)的“收缩数列”\(.\) 其中,\(\max \{{{a}_{1}},{{a}_{2}},\cdots ,{{a}_{k}}\}\)\(\min \{{{a}_{1}},{{a}_{2}},\cdots ,{{a}_{k}}\}\)分别表示\({{a}_{1}},{{a}_{2}},\cdots ,{{a}_{k}}\)中的最大数和最小数.已知\(\{{{a}_{n}}\}\)为无穷数列,其前\(n\)项和为\({{S}_{n}}\),数列\(\{{{b}_{n}}\}\)\(\{{{a}_{n}}\}\)的“收缩数列”.

              \((\)Ⅰ\()\)若\({{a}_{n}}=2n+1\),求\(\{{{b}_{n}}\}\)的前\(n\)项和;
              \((\)Ⅱ\()\)证明:\(\{{{b}_{n}}\}\)的“收缩数列”仍是\(\{{{b}_{n}}\}\);

              \((\)Ⅲ\()\)若\({{S}_{1}}+{{S}_{2}}+\cdots +{{S}_{n}}=\dfrac{n(n+1)}{2}{{a}_{1}}+\dfrac{n(n-1)}{2}{{b}_{n}}(n=1,2,3,\cdots )\),求所有满足该条件的\(\{{{a}_{n}}\}\).

            • 7.
              已知\((x+1)n=a_{0}+a_{1}(x-1)+a_{2}(x-1)^{2}+…+a_{n}(x+1)^{n}(n\geqslant 2,n∈N^{*})..\)
              \((1)\)当\(n=3\)时,求\( \dfrac {a_{1}}{2}+ \dfrac {a_{2}}{2^{2}}+ \dfrac {a_{3}}{2^{3}}\)的值;
              \((2)\)设\(b_{n}= \dfrac {a_{n}}{2^{n-2}},T_{n}=b_{2}+b_{3}+…+b_{n}\).
              \(①\)求\(b_{n}\)的表达式;
              \(②\)使用数学归纳法证明:当\(n\geqslant 2\)时,\(T_{n}= \dfrac {n(n+1)(n-1)}{6}\).
            • 8.
              数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),且\(S_{n}=n(n+1)(n∈N^{*})\)
              \((1)\)求数列\(\{a_{n}\}\)的通项公式;
              \((2)\)若数列\(\{b_{n}\}\)满足:\(a_{n}= \dfrac {b_{1}}{3+1}+ \dfrac {b_{2}}{3^{2}+1}+ \dfrac {b_{3}}{3^{3}+1}+…+ \dfrac {b_{n}}{3^{n}+1}\),求数列\(\{b_{n}\}\)的通项公式;
              \((3)\)令\(c_{n}= \dfrac {a_{n}b_{n}}{4}(n∈N^{*})\),求数列\(\{c_{n}\}\)的前\(n\)项和\(T_{n}\).
            • 9. 设数列\(\left\{ {{a}_{n}} \right\}\)是等差数列,\({{a}_{3}}=5,{{a}_{5}}-2{{a}_{2}}=3\) ,数列\(\left\{ {{b}_{n}} \right\}\)为等比数列,满足\({b}_{1}=3,公比q=3 \)
              \((1)\)求数列\(\left\{ {{a}_{n}} \right\}\)和\(\left\{ {{b}_{n}} \right\}\)的通项公式;
              \((2)\)设\({{c}_{n}}={{a}_{n}}\cdot {{b}_{n}}\) ,设\({{T}_{n}}\)为\(\left\{ {{c}_{n}} \right\}\)的前\(n\)项和,求\({{T}_{n}}\) \(.\) 
            • 10.

              已知数列\(\{a_{n}\}\)的前\(n\)项和\({S}_{n}= \dfrac{1}{2}{n}^{2}+ \dfrac{1}{2}n \),

              \((\)Ⅰ\()\)求通项公式\(a_{n}\)的表达式;

              \((\)Ⅱ\()\)令\({b}_{n}={a}_{n}·{2}^{n-1} \),求数列\(\{b_{n}\}\)的前\(n\)项的和\(T_{n}\).

            0/40

            进入组卷