优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              已知在四棱锥\(P-ABCD\)中,底面\(ABCD\)是矩形,且\(AD=2\),\(AB=1\),\(PA⊥\)平面\(ABCD\),\(E\)、\(F\)分别是线段\(AB\)、\(BC\)的中点.
              \((1)\)证明:\(PF⊥FD\);
              \((2)\)判断并说明\(PA\)上是否存在点\(G\),使得\(EG/\!/\)平面\(PFD\);
              \((3)\)若\(PB\)与平面\(ABCD\)所成的角为\(45^{\circ}\),求二面角\(A-PD-F\)的余弦值.
            • 2.
              在长方体\(ABCD-A_{1}B_{1}C_{1}D_{1}\)中,\(AA_{1}=AD=2\),点\(E\)在棱\(CD\)上,且\(CE= \dfrac {1}{3}CD\).
              \((1)\)求证:\(AD_{1}⊥\)平面\(A_{1}B_{1}D\);
              \((2)\)在棱\(AA_{1}\)上是否存在点\(P\),使\(DP/\!/\)平面\(B_{1}AE\)?若存在,求出线段\(AP\)的长;若不存在,请说明理由;
              \((3)\)若二面角\(A-B_{1}E-A_{1}\)的余弦值为\( \dfrac { \sqrt {30}}{6}\),求棱\(AB\)的长.
            • 3.
              如图,在三棱柱\(ABC-A_{1}B_{1}C_{1}\)中,侧棱\(A_{1}A⊥\)平面\(ABC\),\(AC⊥BC\),\(AC=1\),\(BC=2\),\(S\),点\(D\)是\(AB\)的中点.
              \((I)\)证明:\(AC_{1}/\!/\)平面\(CDB_{1}\);
              \((\)Ⅱ\()\)在线段\(AB\)上找一点\(P\),使得直线\(AC_{1}\)与\(CP\)所成角的为\(60^{\circ}\),求\( \dfrac {| \overrightarrow{AP}|}{| \overrightarrow{AB}|}\)的值.
            • 4.
              如图,在四棱锥\(E-ABCD\)中,底面\(ABCD\)为正方形,\(AE⊥\)平面\(CDE\),已知\(AE=DE=2\),\(F\)为线段\(DE\)的中点.
              \((1)\)求证:\(BE/\!/\)平面\(ACF\)
              \((2)\)求异面直线\(AD\)与\(CF\)所成角的余弦值.
            • 5.
              在四棱锥\(P-ABCD\)中,平面\(PAD⊥\)平面\(ABCD\),\(\triangle PAD\)为等边三角形,\(AB=AD= \dfrac {1}{2}CD\),\(AB⊥AD\),\(AB/\!/CD\),点\(M\)是\(PC\)的中点.
              \((I)\)求证:\(MB/\!/\)平面\(PAD\);
              \((II)\)求二面角\(P-BC-D\)的余弦值.
            • 6.
              如图,四边形\(PDCE\)为矩形,四边形\(ABCD\)为梯形,平面\(PDCE⊥\)平面\(ABCD\),\(∠BAD=∠ADC=90^{\circ}\),\(AB=AD= \dfrac {1}{2}CD=a\),\(PD= \sqrt {2}a.\)


              \((1)\)若\(M\)为\(PA\)中点,求证:\(AC/\!/\)平面\(MDE\);
              \((2)\)求平面\(PAD\)与\(PBC\)所成锐二面角的大小.
            • 7.
              如图,在三棱柱\(ABC-A_{1}B_{1}C_{1}\)中,侧面\(AA_{1}C_{1}C⊥\)底面\(ABC\),\(AA_{1}=A_{1}C=AC=2\),\(AB=BC\),\(AB⊥BC\),\(O\)为\(AC\)中点.
              \((1)\)证明:\(A_{1}O⊥\)平面\(ABC\);
              \((2)\)若\(E\)是线段\(A_{1}B\)上一点,且满足\(V_{E-BCC_{1}}= \dfrac {1}{12}V_{ABC-A_{1}B_{1}C_{1}}\),求\(A_{1}E\)的长度.
            • 8.
              如图,三棱柱\(ABC-A_{1}B_{1}C_{1}\)中,\(AA_{1}⊥\)平面\(ABC\),\(BC⊥AC\),\(BC=AC=2\),\(AA_{1}=3\),\(D\)为\(AC\)的中点
              \((\)Ⅰ\()\)求证:\(AB_{1}/\!/\)平面\(BDC_{1}\);
              \((\)Ⅱ\()\)求二面角\(C_{1}-BD-C\)的余弦值;
              \((\)Ⅲ\()\)在侧棱\(AA_{1}\)上是否存在点\(P\),使得\(CP⊥\)平面\(BDC_{1}\)?若存在,求出\(AP\)的长;若不存在,说明理由.
            • 9.
              如图,在四棱锥\(V-ABCD\)中底面\(ABCD\)是正方形,侧面\(VAD\)是正三角形,平面\(VAD⊥\)底面\(ABCD\)
              \((1)\)证明:\(AB⊥\)平面\(VAD\);         
              \((2)\)求面\(VAD\)与面\(VDB\)所成的二面角的余弦值.
            • 10.
              在正四棱柱\(ABCD-A_{1}B_{1}C_{1}D_{1}\)中,\(AA_{1}=2AB\),\(E\)为棱\(CC_{1}\)上的动点.
              \((1)\)若\(E\)为棱\(CC_{1}\)的中点,求证:\(A_{1}E⊥\)平面\(BDE\);
              \((2)\)试确定\(E\)点的位置使直线\(A_{1}C\)与平面\(BDE\)所成角的正弦值是\( \dfrac {2 \sqrt {2}}{3}\).
            0/40

            进入组卷