优优班--学霸训练营 > 知识点挑题
全部资源
          排序:
          最新 浏览

          50条信息

            • 1.
              如图,棱锥\(P-ABCD\)的底面\(ABCD\)是矩形,\(PA⊥\)平面\(ABCD\),\(PA=AD=2\),\(BD=2 \sqrt {2}\).
              \((1)\)求证:\(BD⊥\)平面\(PAC\);
              \((2)\)求二面角\(P-CD-B\)余弦值的大小;
              \((3)\)求点\(C\)到平面\(PBD\)的距离.
            • 2.
              如图,在三棱锥\(V-ABC\)中,平面\(VAB⊥\)平面\(ABC\),\(\triangle VAB\)为等边三角形,\(AC⊥BC\)且\(AC=BC= \sqrt {2}\),\(O\),\(M\)分别为\(AB\),\(VA\)的中点.
              \((1)\)求证:\(VB/\!/\)平面\(MOC\);
              \((2)\)求证:平面\(MOC⊥\)平面\(VAB\)
              \((3)\)求三棱锥\(V-ABC\)的体积.
            • 3.
              如图,直四棱柱\(ABCD-A_{1}B_{1}C_{1}D_{1}\)中,\(AB/\!/CD\),\(AD⊥AB\),\(AB=2\),\(AD= \sqrt {2}\),\(AA_{1}=3\),\(E\)为\(CD\)上一点,\(DE=1\),\(EC=3\)
              \((1)\)证明:\(BE⊥\)平面\(BB_{1}C_{1}C\);
              \((2)\)求点\(B_{1}\)到平面\(EA_{1}C_{1}\) 的距离.
            • 4.
              三棱锥被平行于底面\(ABC\)的平面所截得的几何体如图所示,截面为\(A_{1}B_{1}C_{1}\),\(∠BAC=90^{\circ}\),\(A_{1}A⊥\)平面\(ABC\),\(A_{1}A= \sqrt {3}\),\(AB= \sqrt {2}\),\(AC=2\),\(A_{1}C_{1}=1\),\( \dfrac {BD}{DC}= \dfrac {1}{2}\).
              \((\)Ⅰ\()\)证明:\(BC⊥\)平面\(A_{1}AD\)
              \((\)Ⅱ\()\)求二面角\(A-CC_{1}-B\)的余弦值.
            • 5.
              如图,直三棱柱\(ABC-A_{1}B_{1}C_{1}\)中,\(D\),\(E\)分别是\(AB\)、\(BB_{1}\)的中点,\(AB=BC\).
              \((1)\)证明:\(BC_{1}/\!/\)平面\(A_{1}CD\);
              \((2)\)平面\(A_{1}EC⊥\)平面\(ACC_{1}A_{1}\).
            • 6.
              如图所示,在四棱锥\(P-ABCD\)中,底面\(ABCD\)是正方形,侧棱\(PD⊥\)底面\(ABCD\),\(PD=DC=2\),\(E\)是\(PC\)的中点,过\(E\)点作\(EF⊥PB\)交\(PB\)于点\(F\).
              \((1)\)证明:\(PA/\!/\)平面\(EDB\);
              \((2)\)证明:\(PB⊥\)平面\(EFD\);
              \((3)\)求三棱锥\(E-BCD\)的体积.
            • 7.
              如图,在直三棱柱\(ABC-A_{1}B_{1}C_{1}\)中,已知\(AC⊥BC\),\(BC=CC_{1}\),设\(AB_{1}\)的中点为\(D\),\(BC_{1}∩B_{1}C=E.\)求证:
              \((\)Ⅰ\()DE/\!/\)平面\(AA_{1}C_{1}C\);
              \((\)Ⅱ\()BC_{1}⊥AB_{1}\).
            • 8.
              如图,正三棱柱的所有棱长都为\(2\),\(D\)为\(CC_{1}\)中点\(.\)用空间向量进行以下证明和计算:
              \((1)\)求证:\(AB_{1}⊥\)面\(A_{1}BD\);
              \((2)\)求二面角\(A-A_{1}D-B\)的正弦值;
              \((3)\)求点\(C\)到面\(A_{1}BD\)的距离.
            • 9.
              如图,已知\(AB⊥\)平面\(ACD\),\(DE/\!/AB\),\(\triangle ACD\)是正三角形,\(AD=DE=2AB\),且\(F\)是\(CD\)的中点.
              \((1)\)求证:\(AF/\!/\)平面\(BCE\);
              \((2)\)求证:平面\(BCE⊥\)平面\(CDE\);
              \((3)\)求平面\(BCE\)与平面\(ACD\)所成锐二面角的大小.
            • 10.
              如图,已知矩形\(ABCD\)所在平面垂直于直角梯形\(ABPE\)所在平面,平面\(ABCD∩\)平面\(ABPE=AB\),且\(AB=BP=2\),\(AD=AE=1\),\(AE⊥AB\),且\(AE/\!/BP\).
              \((\)Ⅰ\()\)设点\(M\)为棱\(PD\)中点,求证:\(EM/\!/\)平面\(ABCD\);
              \((\)Ⅱ\()\)线段\(PD\)上是否存在一点\(N\),使得直线\(BN\)与平面\(PCD\)所成角的正弦值等于\( \dfrac {2}{5}\)?若存在,试确定点\(N\)的位置;若不存在,请说明理由.
            0/40

            进入组卷